217
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

The structural basis of the autoinhibition mechanism of glycogen synthase kinase 3β (GSK3β): molecular modeling and molecular dynamics simulation studies

, , , &
Pages 1741-1750 | Received 21 Mar 2019, Accepted 01 May 2019, Published online: 16 May 2019

References

  • Agrawal, P., Singh, H., Srivastava, H. K., Singh, S., Kishore, G., & Raghava, G. P. S. (2019). Benchmarking of different molecular docking methods for protein-peptide docking. BMC Bioinformatics, 19, 426. http://doi.org/10.1186/s12859-018-2449-y
  • Ali, A., Hoeflich, K. P., & Woodgett, J. R. (2001). Glycogen synthase kinase-3: Properties, functions, and regulation. Chemical Reviews, 101(8), 2527–2540. doi: 10.1021/cr000110o
  • Arfeen, M., Patel, R., Khan, T., & Bharatam, P. V. (2015). Molecular dynamics simulation studies of GSK-3β ATP competitive inhibitors: Understanding the factors contributing to selectivity. Journal of Biomolecular Structure and Dynamics, 33(12), 2578–2593. doi: 10.1080/07391102.2015.1063457
  • Buch, I., Fishelovitch, D., London, N., Raveh, B., Wolfson, H. J., & Nussinov, R. (2010). Allosteric regulation of glycogen synthase kinase 3β: A theoretical study. Biochemistry, 49(51), 10890–10901. doi: 10.1021/bi100822q
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., … Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. doi: 10.1002/jcc.20290
  • Cohen, P., Cohen, P., & Frame, S. (2001). TIMELINE: The renaissance of GSK3. Nature Reviews Molecular Cell Biology, 2(10), 769–776. doi: 10.1038/35096075
  • Dajani, R., Fraser, E., Roe, S. M., Young, N., Good, V., Dale, T. C., & Pearl, L. H. (2001). Crystal structure of glycogen synthase kinase 3 beta: Structural basis for phosphate-primed substrate specificity and autoinhibition. Cell, 105(6), 721–732. http://doi.org/S0092-8674(01)00374-9 doi: 10.1016/S0092-8674(01)00374-9
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. Journal of Chemical Physics., 98(12), 10089–10092. doi: 10.1063/1.464397
  • Eldar-Finkelman, H., Licht-Murava, A., Pietrokovski, S., & Eisenstein, M. (2010). Substrate competitive GSK-3 inhibitors – Strategy and implications. Biochimica et Biophysica Acta, 1804(3), 598–603. doi: 10.1016/j.bbapap.2009.09.010
  • Eldar-Finkelman, H., & Martinez, A. (2011). GSK-3 inhibitors: Preclinical and clinical focus on CNS. Frontiers in Molecular Neuroscience, 4, 1–18. http://doi.org/10.3389/fnmol.2011.00032
  • Homeyer, N., Horn, A. H. C., Lanig, H., & Sticht, H. (2006). AMBER force field parameters for phosphorylated amino acids in different protonation states: Phosphoserine, phosphothreonine, phosphotyrosine and phosphohistidine. Journal of Molecular Modeling, 12(3), 281–289. doi: 10.1007/s00894-005-0028-4
  • Hou, T., Li, N., Li, Y., & Wang, W. (2012). Characterization of domain-peptide interaction interface: Prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. Journal of Proteome Research, 11(5), 2982–2995. doi: 10.1021/pr3000688
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. doi: 10.1021/ci100275a
  • Hou, T., & Yu, R. (2007). Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: Mechanism for binding and drug resistance. Journal of Medicinal Chemistry, 50(6), 1177–1188. doi: 10.1021/jm0609162
  • Howng, S.-L., Hwang, C.-C., Hsu, C.-Y., Hsu, M.-Y., Teng, C.-Y., Chou, C.-H., … Hong, Y.-R. (2010). Involvement of the residues of GSKIP, AxinGID, and FRATtide in their binding with GSK3beta to unravel a novel C-terminal scaffold-binding region. Molecular and Cellular Biochemistry, 339(1-2), 23–33. doi: 10.1007/s11010-009-0366-0
  • Hwang, H., Kim, B.-H., Vreven, T., Pierce, B. G., Wiehe, K., & Weng, Z. (2014). ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 30, 1771–1773. doi: 10.1093/bioinformatics/btu097
  • Ilouz, R., Pietrokovski, S., Eisenstein, M., & Eldar-Finkelman, H. (2008). New insights into the autoinhibition mechanism of glycogen synthase kinase-3β. Journal of Molecular Biology, 383(5), 999–1007. doi: 10.1016/j.jmb.2008.08.079
  • Kannan, S., & Kolandaivel, P. (2018). The inhibitory performance of flavonoid cyanidin-3-sambubiocide against H274Y mutation in H1N1 influenza virus. Journal of Biomolecular Structure and Dynamics, 36(16), 4255–4269. doi: 10.1080/07391102.2017.1413422
  • Kim, T. W., Michniewicz, M., Bergmann, D. C., & Wang, Z. Y. (2012). Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature, 482(7385), 419–422. doi: 10.1038/nature10794
  • Kong, X., Pan, P., Li, D., Tian, S., Li, Y., & Hou, T. (2015). Importance of protein flexibility in ranking inhibitor affinities: Modeling the binding mechanisms of piperidine carboxamides as type I1/2 ALK inhibitors. Physical Chemistry Chemical Physics, 17(8), 6098–6113. doi: 10.1039/C4CP05440G
  • Li, H.-L., Ma, Y., Ma, Y., Li, Y., Chen, X.-B., Dong, W.-L., & Wang, R.-L. (2017). The design of novel inhibitors for treating cancer by targeting CDC25B through disruption of CDC25B-CDK2/Cyclin A interaction using computational approaches. Oncotarget, 8, 33225–33240. http://doi.org/10.18632/oncotarget.16600
  • Lin, S.-Y., Li, T. Y., Liu, Q., Zhang, C., Li, X., Chen, Y., … Lin, S.-C. (2012). GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science, 336(6080), 477–481. doi: 10.1126/science.1217032
  • Liu, N., Zhou, W., Guo, Y., Wang, J., Fu, W., Sun, H., … Hou, T. (2018). Molecular dynamics simulations revealed the regulation of ligands to the interactions between androgen receptor and its coactivator. Journal of Chemical Information and Modeling, 58(8), 1652–1661. doi: 10.1021/acs.jcim.8b00283
  • Lu, S., Banerjee, A., Jang, H., Zhang, J., Gaponenko, V., & Nussinov, R. (2015). GTP binding and oncogenic mutations may attenuate hypervariable region (HVR)-catalytic domain interactions in small GTPase K-Ras4B, exposing the effector binding site. Journal of Biological Chemistry, 290(48), 28887–28900. doi: 10.1074/jbc.M115.664755
  • Lu, S., He, X., Ni, D., & Zhang, J. (2019). Allosteric modulator discovery: From serendipity to structure-based design. Journal of Medicinal Chemistry, doi:http://doi.org/10.1021/acs.jmedchem.8b01749
  • Lu, S., Jang, H., Gu, S., Zhang, J., & Nussinov, R. (2016). Drugging Ras GTPase: A comprehensive mechanistic and signaling structural view. Chemical Society Reviews, 45(18), 4929–4952. doi: 10.1039/c5cs00911a
  • Lu, S., Jang, H., Muratcioglu, S., Gursoy, A., Keskin, O., Nussinov, R., & Zhang, J. (2016). Ras conformational ensembles, allostery, and signaling. Chemical Reviews, 116(11), 6607–6665. doi: 10.1021/acs.chemrev.5b00542
  • Lu, S., Ji, M., Ni, D., & Zhang, J. (2018). Discovery of hidden allosteric sites as novel targets for allosteric drug design. Drug Discovery Today, 23(2), 359–365. doi: 10.1016/j.drudis.2017.10.001
  • Lu, S., Shen, Q., & Zhang, J. (2019). Allosteric methods and their applications: Facilitating the discovery of allosteric drugs and the investigation of allosteric mechanisms. Accounts of Chemical Research, 52(2), 492–500. doi: 10.1021/acs.accounts.8b00570
  • Lu, S., & Zhang, J. (2017). Designed covalent allosteric modulators: An emerging paradigm in drug discovery. Drug Discovery Today, 22(2), 447–453. doi: 10.1016/j.drudis.2016.11.013
  • Lu, S., & Zhang, J. (2019). Small molecule allosteric modulators of G-protein-coupled receptors: Drug–target interactions. Journal of Medicinal Chemistry, 62(1), 24–45. doi: 10.1021/acs.jmedchem.7b01844
  • Lu, S.-Y., Jiang, Y.-J., Zou, J.-W., & Wu, T.-X. (2011). Molecular modeling and molecular dynamics simulation studies of the GSK3β/ATP/substrate complex: Understanding the unique P + 4 primed phosphorylation specificity for GSK3β substrates. Journal of Chemical Information and Modeling, 51(5), 1025–1036. doi: 10.1021/ci100493j
  • Lu, S.-Y., Jiang, Y.-J., Zou, J.-W., & Wu, T.-X. (2012). Effect of double mutations K214/A-E215/Q of FRATide on GSK3β: Insights from molecular dynamics simulation and normal mode analysis. Amino Acids, 43(1), 267–277. doi: 10.1007/s00726-011-1070-4
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. doi: 10.1021/acs.jctc.5b00255
  • Mou, L., Li, M., Lu, S.-Y., Li, S., Shen, Q., Zhang, J., … Lu, X. (2014). Unraveling the role of Arg4 and Arg6 in the auto-inhibition mechanism of GSK3 β from molecular dynamics simulation. Chemical Biology & Drug Design, 83, 721–730. doi: 10.1111/cbdd.12286
  • Ni, D., Liu, D., Zhang, J., & Lu, S. (2018). Computational insights into the interactions between calmodulin and the c/nSH2 domains of p85α regulatory subunit of PI3Kα: Implication for PI3Kα activation by calmodulin. International Journal of Molecular Sciences, 19(1), 151. doi: 10.3390/ijms19010151
  • Ni, D., Song, K., Zhang, J., & Lu, S. (2017). Molecular dynamics simulations and dynamic network analysis reveal the allosteric unbinding of monobody to H-Ras triggered by R135K mutation. International Journal of Molecular Sciences, 18(11), 2249. doi: 10.3390/ijms18112249
  • Nussinov, R., & Tsai, C.-J. (2012). The different ways through which specificity works in orthosteric and allosteric drugs. Current Pharmaceutical Design, 18(9), 1311–1316. doi: 10.2174/138161212799436377
  • Nussinov, R., & Tsai, C. J. (2013). Allostery in disease and in drug discovery. Cell, 153(2), 293–305. doi: 10.1016/j.cell.2013.03.034
  • Nussinov, R., & Tsai, C.-J. (2015). The design of covalent allosteric drugs. Annual Review of Pharmacology and Toxicology, 55, 249–267. doi: 10.1146/annurev-pharmtox-010814-124401
  • Palomo, V., Perez, D. I., Roca, C., Anderson, C., Rodríguez-Muela, N., Perez, C., … Martinez, A. (2017). Subtly modulating glycogen synthase kinase 3β: Allosteric inhibitor development and their potential for the treatment of chronic diseases. Journal of Medicinal Chemistry, 60(12), 4983–5001. doi: 10.1021/acs.jmedchem.7b00395
  • Radhika, R., Shankar, R., Vijayakumar, S., & Kolandaivel, P. (2018). Role of 6-Mercaptopurine in the potential therapeutic targets DNA base pairs and G-quadruplex DNA: Insights from quantum chemical and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 36(6), 1369–1401. doi: 10.1080/07391102.2017.1323013
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. doi: 10.1016/0021-9991(77)90098-5
  • Sciú, M. L., Sebastián-Pérez, V., Martinez-Gonzalez, L., Benitez, R., Perez, D. I., Pérez, C., … Moyano, E. L. (2019). Computer-aided molecular design of pyrazolotriazines targeting glycogen synthase kinase 3. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 87–96. doi: 10.1080/14756366.2018.1530223
  • Shao, J., Tanner, S. W., Thompson, N., & Cheatham, T. E. (2007). Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. Journal of Chemical Theory and Computation, 3(6), 2312–2334. doi: 10.1021/ct700119m
  • Singh, I., Singh, S., Verma, V., Uversky, V. N., & Chandra, R. (2018). In silico evaluation of the resistance of the T790M variant of epidermal growth factor receptor kinase to cancer drug Erlotinib. Journal of Biomolecular Structure and Dynamics, 36(16), 4209–4219. doi: 10.1080/07391102.2017.1411293
  • Sun, S., He, M., VanPatten, S., & Al-Abed, Y. (2018). Mechanistic insights into high mobility group box-1 (HMGb1)-induced Toll-like receptor 4 (TLR4) dimer formation. Journal of Biomolecular Structure and Dynamics, 1. doi: 10.1080/07391102.2018.1526712
  • ter Haar, E., Coll, J. T., Austen, D. A., Hsiao, H. M., Swenson, L., & Jain, J. (2001). Structure of GSK3beta reveals a primed phosphorylation mechanism. Nature Structural Biology, 8(7), 593–596. doi: 10.1038/89624
  • Tesch, R., Becker, C., Müller, M. P., Beck, M. E., Quambusch, L., Getlik, M., … Rauh, D. (2018). An unusual intramolecular halogen bond guides conformational selection. Angewandte Chemie International Edition, 57(31), 9970–9975. doi: 10.1002/anie.201804917
  • Wang, L., Zheng, G., Liu, X., Ni, D., He, X., Cheng, J., & Lu, S. (2019). Molecular dynamics simulations provide insights into the origin of Gleevec’s selectivity toward human tyrosine kinases. Journal of Biomolecular Structure and Dynamics, 37(10), 2733–2744. doi: 10.1080/07391102.2018.1496139
  • Winfield, H. J., Cahill, M. M., O'Shea, K. D., Pierce, L. T., Robert, T., Ruchaud, S., … McCarthy, F. O. (2018). Synthesis and anticancer activity of novel bisindolylhydroxymaleimide derivatives with potent GSK-3 kinase inhibition. Bioorganic and Medicinal Chemistry, 26(14), 4209–4224. doi: 10.1016/j.bmc.2018.07.012
  • Xu, M., Wang, S. L., Zhu, L., Wu, P. Y., Dai, W. B., & Rakesh, K. P. (2019). Structure-activity relationship (SAR) studies of synthetic glycogen synthase kinase-3β inhibitors: A critical review. European Journal of Medicinal Chemistry, 164, 448–470. doi: 10.1016/j.ejmech.2018.12.073
  • Xu, X., Ni, D., Lu, S., Chen, Y., Li, X., Fu, Q., & Zhang, J. (2019). The chemical diversity and structure-based discovery of allosteric modulators for the PIF-pocket of protein kinase PDK1. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 361–374. doi: 10.1080/14756366.2018.1553167
  • Yang, J., Cron, P., Good, V. M., Thompson, V., Hemmings, B. A., & Barford, D. (2002). Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nature Structural Biology, 9(12), 940–944. doi: 10.1038/nsb870
  • Zhang, H., He, X., Ni, D., Mou, L., Chen, X., & Lu, S. (2019). How does the novel T315L mutation of breakpoint cluster region-abelson (BCR-ABL) kinase confer resistance to ponatinib: A comparative molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 1. doi: 10.1080/07391102.2019.1567390
  • Zhang, N., Jiang, Y., Zou, J., Yu, Q., & Zhao, W. (2009). Structural basis for the complete loss of GSK3beta catalytic activity due to R96 mutation investigated by molecular dynamics study. Proteins: Structure, Function, and Bioinformatics, 75(3), 671–681. doi: 10.1002/prot.22279
  • Zhou, Y., Zhang, N., Chen, W., Zhao, L., & Zhong, R. (2016). Underlying mechanisms of cyclic peptide inhibitors interrupting the interaction of CK2α/CK2β: Comparative molecular dynamics simulation studies. Physical Chemistry Chemical Physics, 18(13), 9202–9210. doi: 10.1039/C5CP06276D

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.