229
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Fibroblast growth factor receptor (FGFR) inhibitors as anticancer agents: 3D-QSAR, molecular docking and dynamics simulation studies of 1, 6-naphthyridines and pyridopyrimidines

, ORCID Icon, , & ORCID Icon
Pages 3591-3606 | Received 29 Dec 2021, Accepted 08 Mar 2022, Published online: 23 Mar 2022
 

Abstract

Fibroblast growth factor receptor (FGFR) plays a vital role in tissue regeneration, angiogenesis, and embryogenesis. 3D-QSAR and molecular modeling methods are widely used for designing novel compounds for the determination of inhibitory activity against the biological target. In the present study, 3D-QSAR (CoMFA and CoMSIA) analysis was performed on 1, 6-naphthyridines, and pyridopyrimidines as potential FGFR inhibitors as anticancer agents. The best CoMFA and CoMSIA models were generated from test and training set derivatives with leave-one-out correlation coefficients (q2) 0.591 and 0.667, cross-validated correlation coefficients (r2cv) 0.584 and 0.652, conventional coefficients (r2ncv) 0.978 and 0.975 respectively. The developed models were validated by a test set of 12 compounds providing acceptable predictive correlation coefficient (r2pred) 0.61 and 0.68 for both models. The generated CoMFA and CoMSIA contour maps could be used to design novel 1, 6-naphthyridine analogs. Molecular docking studies indicated that compound 75 occupied the active site of the FGFR kinase interacting with Glu520 in the catalytic region, Asp630 in the DFG motif, and Met524 in the hinge region which compared with standard drug Ponatinib. The molecular dynamics simulation analysis revealed that the inhibitor 75 displayed binding stability in the active site of the FGFR4 by making two hydrogen bonds and one π-cation interaction. Collectively the outcome of the study suggested that the applications of ligand-based and structure-based approaches could be applied for the design of new FGFR4 inhibitors as anticancer agents.

Communicated by Ramaswamy H. Sarma

Acknowledgments

The authors are grateful to Dr. Shivajirao S. Kadam, Chancellor and Dr. S. F. Patil, Research Director, Bharati Vidyapeeth (Deemed to be University) Pune, Maharashtra, India, for their encouragement and useful advices.

Author contribution

All the authors have equally contributed to the research work and approved the final version of the manuscript.

Disclosure statement

The authors declare no conflict of interest concerning this manuscript.

Funding

There was no funding source pertaining to this research work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.