229
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Fibroblast growth factor receptor (FGFR) inhibitors as anticancer agents: 3D-QSAR, molecular docking and dynamics simulation studies of 1, 6-naphthyridines and pyridopyrimidines

, ORCID Icon, , & ORCID Icon
Pages 3591-3606 | Received 29 Dec 2021, Accepted 08 Mar 2022, Published online: 23 Mar 2022

References

  • Bhansali, S. G., & Kulkarni, V. M. (2014). Combined 2D and 3D-QSAR, molecular modelling and docking studies of pyrazolodiazepinones as novel phosphodiesterase 2 inhibitors. SAR and QSAR in Environmental Research, 25(11), 905–937. https://doi.org/10.1080/1062936X.2014.969309
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. InSC'06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 2006 Nov 11 (pp. 43-43). IEEE
  • Caballero, J., Fernández, M., & Coll, D. (2010). Quantitative structure-activity relationship of organosulphur compounds as Soybean 15-Lipoxygenase inhibitors using CoMFA and CoMSIA. Chemical Biology & Drug Design, 76(6), 511–517. https://doi.org/10.1111/j.1747-0285.2010.01039.x
  • Chae, Y. K., Ranganath, K., Hammerman, P. S., Vaklavas, C., Mohindra, N., Kalyan, A., Matsangou, M., Costa, R., Carneiro, B., Villaflor, V. M., Cristofanilli, M., & Giles, F. J. (2017). Inhibition of the fibroblast growth factor receptor (FGFR) pathway: The current landscape and barriers to clinical application. Oncotarget, 8(9), 16052–16074. https://doi.org/10.18632/oncotarget.14109
  • Chen, G., Tian, X., Liu, Z., Zhou, S., Schmidt, B., Henne-Bruns, D., Bachem, M., & Kornmann, M. (2010). Inhibition of endogenous SPARC enhances pancreatic cancer cell growth: Modulation by FGFR1-III isoform expression. British Journal of Cancer, 102(1), 188–195. https://doi.org/10.1038/sj.bjc.6605440
  • Chen, H., Huang, Z., Dutta, K., Blais, S., Neubert, T. A., Li, X., Cowburn, D., Traaseth, N. J., & Mohammadi, M. (2013). Cracking the molecular origin of intrinsic tyrosine kinase activity through analysis of pathogenic gain-of-function mutations. Cell Reports, 4(2), 376–384. https://doi.org/10.1016/j.celrep.2013.06.025
  • Clark, M., Cramer, R. D., & Van Opdenbosch, N. (1989). Validation of the general purpose tripos 5.2 force field. Journal of Computational Chemistry, 10(8), 982–1012. https://doi.org/10.1002/jcc.540100804
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Gavine, P. R., Mooney, L., Kilgour, E., Thomas, A. P., Al-Kadhimi, K., Beck, S., Rooney, C., Coleman, T., Baker, D., Mellor, M. J., Brooks, A. N., & Klinowska, T. (2012). AZD4547: An orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Research, 72(8), 2045–2056. https://doi.org/10.1158/0008-5472.CAN-11-3034
  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2!. Journal of Molecular Graphics & Modelling, 20(4), 269–276. https://doi.org/10.1016/S1093-3263(01)00123-1
  • Gu, W., Dai, Y., Qiang, H., Shi, W., Liao, C., Zhao, F., Huang, W., & Qian, H. (2017). Discovery of novel 2-substituted-4-(2-fluorophenoxy) pyridine derivatives possessing pyrazolone and triazole moieties as dual c-Met/VEGFR-2 receptor tyrosine kinase inhibitors. Bioorganic Chemistry, 72, 116–122. https://doi.org/10.1016/j.bioorg.2017.04.001
  • Jeffers, M., LaRochelle, W. J., & Lichenstein, H. S. (2002). Fibroblast growth factors in cancer: Therapeutic possibilities. Expert Opinion on Therapeutic Targets, 6(4), 469–482. https://doi.org/10.1517/14728222.6.4.469
  • Klebe, G., Abraham, U., & Mietzner, T. (1994). Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules To Correlate and Predict Their Biological Activity. Journal of Medicinal Chemistry, 37(24), 4130–4146. https://doi.org/10.1021/jm00050a010
  • Kurosu, H., Choi, M., Ogawa, Y., Dickson, A. S., Goetz, R., Eliseenkova, A. V., Mohammadi, M., Rosenblatt, K. P., Kliewer, S. A., & Kuro-O, M. (2007). Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. The Journal of Biological Chemistry, 282(37), 26687–26695. https://doi.org/10.1074/jbc.M704165200
  • Modi, S. J., & Kulkarni, V. M. (2018). 3D-QSAR analysis of pyrimidine derivatives as AXL kinase inhibitors as anticancer agents. Journal of Applied Pharmaceutical Science, 8(11), 15–27. https://doi.org/10.7324/JAPS.2018.81103.
  • Modi, S. J., & Kulkarni, V. M. (2020). Discovery of VEGFR-2 inhibitors exerting significant anticancer activity against CD44+ and CD133+ cancer stem cells (CSCs): Reversal of TGF-β induced epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma. European Journal of Medicinal Chemistry, 207, 112851. https://doi.org/10.1016/j.ejmech.2020.112851
  • Modi, S. J., Modh, D. H., & Kulkarni, V. M. (2020). Insights into the structural features of anticancer 1,6-naphthyridines and pyridopyrimidines as VEGFR-2 inhibitors: 3D-QSAR study. Journal of Applied Pharmaceutical Science, 10(10), 1–22. https://doi.org/10.7324/JAPS.2020.10101
  • Ornitz, D. M., & Itoh, N. (2015). The fibroblast growth factor signaling pathway. Wiley Interdisciplinary Reviews. Developmental Biology, 4(3), 215–266. https://doi.org/10.1002/wdev.176
  • Repana, D., & Ross, P. (2015). Targeting FGF19/FGFR4 Pathway: A Novel Therapeutic Strategy for Hepatocellular Carcinoma. Diseases (Basel, Switzerland), 3(4), 294–305. https://doi.org/10.3390/diseases3040294
  • Roubal, K., Myint, Z. W., & Kolesar, J. M. (2020). Erdafitinib: A novel therapy for FGFR-mutated urothelial cancer. American Journal of Health-System Pharmacy : AJHP : official Journal of the American Society of Health-System Pharmacists, 77(5), 346–351. https://doi.org/10.1093/ajhp/zxz329
  • Thompson, A. M., Delaney, A. M., Hamby, J. M., Schroeder, M. C., Spoon, T. A., Crean, S. M., Showalter, H. D. H., & Denny, W. A. (2005). Synthesis and structure-activity relationships of soluble 7-substituted 3-(3,5-dimethoxyphenyl)-1,6-naphthyridin-2-amines and related ureas as dual inhibitors of the fibroblast growth factor receptor-1 and vascular endothelial growth factor receptor-2 tyr. Journal of Medicinal Chemistry, 48(14), 4628–4653. https://doi.org/10.1021/jm0500931
  • Tucker, J. A., Klein, T., Breed, J., Breeze, A. L., Overman, R., Phillips, C., & Norman, R. A. (2014). Structural insights into FGFR kinase isoform selectivity: Diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure (London, England : 1993), 22(12), 1764–1774. https://doi.org/10.1016/j.str.2014.09.019
  • Turner, N., & Grose, R. (2010). Fibroblast growth factor signalling: From development to cancer. Nature Reviews. Cancer, 10(2), 116–129. https://doi.org/10.1038/nrc2780
  • Weaver, A., & Bossaer, J. B. (2021). Fibroblast growth factor receptor (FGFR) inhibitors: A review of a novel therapeutic class. Journal of Oncology Pharmacy Practice : official Publication of the International Society of Oncology Pharmacy Practitioners, 27(3), 702–710. https://doi.org/10.1177/1078155220983425
  • Wu, D., Guo, M., Min, X., Dai, S., Li, M., Tan, S., Li, G., Chen, X., Ma, Y., Li, J., Jiang, L., Qu, L., Zhou, Z., Chen, Z., Chen, L., Xu, G., & Chen, Y. (2018). LY2874455 potently inhibits FGFR gatekeeper mutants and overcomes mutation-based resistance. Chemical Communications (Cambridge, England), 54(85), 12089–12092. https://doi.org/10.1039/c8cc07546h

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.