121
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A computational study of the R120G mutation in human αB-crystallin: implications for structural stability and functionality

, , , & ORCID Icon
Pages 5788-5798 | Received 31 Jan 2023, Accepted 17 Jun 2023, Published online: 24 Jun 2023
 

Abstract

The eye is a vital organ in the visual system, which is composed of transparent vascular tissue. αB-crystallin, a significant protein found in the lens, plays a crucial role in our understanding of lens diseases. Mutations in the αB-crystallin protein can cause lens diseases, such as cataracts and myopathy. However, the molecular mechanism underlying the R120G mutation is not fully understood. In this study, we utilized molecular dynamics simulations to illustrate, in atomic detail, how the R120G mutation leads to the aggregation of αB-crystallin and scattering of light in the lens. Our findings show that the R120G mutation alters the dynamic and structural properties of the αB-crystallin protein. Specifically, this mutation causes the angle of the hairpin at the C-terminal to increase from 80° to 150°, while reducing the distance between the hydrophobic patches around residues 10 and 44-55 from 1.5 nm to 1 nm. In addition, our results showed that the mutation could disrupt the IPI motif - β4/β8 interaction. The disruption of this interaction could affect the αB-crystallin oligomerization and the chaperone activity of αB-crystallin protein. The exposed hydrophobic area at the IPI motif - β4/β8 could become the primary site for interprotein interactions, which are responsible for large-scale aggregation. We have demonstrated that, in wild-type αB-crystallin protein, salt bridges R120 and D109, R107 and D80 are formed. However, in the case of the R120G mutation, the salt bridges R120 and R109 are disrupted, and a new salt bridge with a different pattern is formed. In our study, it has been found that all of the changes associated with the R120G mutation are located at the interface of chains A and B, which could impact the multimerization of the αB-crystallin. Previous research on the K92-E99 residue has shown that a salt bridge in the dimer I can reduce the chaperone activity of the protein. Furthermore, the salt bridges R120 and D109, as well as R107 and D80 in dimer II, induce changes in the hydrophobic envelope of β-sheets in the α-crystallin domain (ACD). These changes could have an impact on the multimerization of the αB-crystallin, leading to disruption of the oligomer structure and aggregation. Moreover, the changes in the αB-crystallin resulting from the R120G mutation can lead to faulty interactions with other proteins, which can cause the aggregation of αB-crystallin with other proteins, such as desmin. These findings may provide new insights into the development of treatments for lens diseases.

Communicated by Ramaswamy H. Sarma

Data availability statement

All data generated or analyzed during this study are included in this published article. The raw data could be sent upon request.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.