119
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A computational study of the R120G mutation in human αB-crystallin: implications for structural stability and functionality

, , , & ORCID Icon
Pages 5788-5798 | Received 31 Jan 2023, Accepted 17 Jun 2023, Published online: 24 Jun 2023

References

  • Alperstein, A. M., Molnar, K. S., Dicke, S. S., Farrell, K. M., Makley, L. N., Zanni, M. T., & Andley, U. P. (2021). Analysis of amyloid-like secondary structure in the Cryab-R120G knock-in mouse model of hereditary cataracts by two-dimensional infrared spectroscopy. PloS One, 16(9), e0257098. https://doi.org/10.1371/journal.pone.0257098
  • Andley, U. P., Hamilton, P. D., Ravi, N., & Weihl, C. C. (2011). A knock-in mouse model for the R120G mutation of αB-crystallin recapitulates human hereditary myopathy and cataracts. PloS One, 6(3), e17671. https://doi.org/10.1371/journal.pone.0017671
  • Bagnéris, C., Bateman, O. A., Naylor, C. E., Cronin, N., Boelens, W. C., Keep, N. H., & Slingsby, C. (2009). Crystal structures of α-crystallin domain dimers of αB-crystallin and Hsp20. Journal of Molecular Biology, 392(5), 1242–1252. https://doi.org/10.1016/j.jmb.2009.07.069
  • Bari, K. J., & Sharma, S. (2020). A perspective on biophysical studies of crystallin aggregation and implications for cataract formation. The Journal of Physical Chemistry. B, 124(49), 11041–11054. https://doi.org/10.1021/acs.jpcb.0c07449
  • Boelens, W. C. (2020). Structural aspects of the human small heat shock proteins related to their functional activities. Cell Stress & Chaperones, 25(4), 581–591. https://doi.org/10.1007/s12192-020-01093-1
  • Bova, M. P., Yaron, O., Huang, Q., Ding, L., Haley, D. A., Stewart, P. L., & Horwitz, J. (1999). Mutation R120G in αB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6137–6142. https://doi.org/10.1073/pnas.96.11.6137
  • Braun, N., Zacharias, M., Peschek, J., Kastenmüller, A., Zou, J., Hanzlik, M., Haslbeck, M., Rappsilber, J., Buchner, J., & Weinkauf, S. (2011). Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20491–20496. https://doi.org/10.1073/pnas.1111014108
  • Clark, A. R., Naylor, C. E., Bagneris, C., Keep, N. H., & Slingsby, C. (2011). Crystal structure of R120G disease mutant of human αB-crystallin domain dimer shows closure of a groove. Journal of Molecular Biology, 408(1), 118–134. https://doi.org/10.1016/j.jmb.2011.02.020
  • Dao-Pin, S., Anderson, D., Baase, W., Dahlquist, F., & Matthews, B. W. (1991). Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme. Biochemistry, 30(49), 11521–11529. https://doi.org/10.1021/bi00113a006
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Darvishi, M. H., Allahverdi, A., Hashemzadeh, H., & Javadi, H. R. (2022). Investigation of the ionic conditions in SiRNA-mediated delivery through its carriers in the cell membrane: a molecular dynamic simulation. Scientific Reports, 12(1), 17520. https://doi.org/10.1038/s41598-022-22509-1
  • Delbecq, S. P., & Klevit, R. E. (2013). One size does not fit all: The oligomeric states of αB crystallin. FEBS Letters, 587(8), 1073–1080. https://doi.org/10.1016/j.febslet.2013.01.021
  • Delbecq, S. P., Jehle, S., & Klevit, R. (2012). Binding determinants of the small heat shock protein, αB‐crystallin: Recognition of the ‘IxI’motif. The EMBO Journal, 31(24), 4587–4594. https://doi.org/10.1038/emboj.2012.318
  • Derham, B. K., & Harding, J. J. (1999). α-Crystallin as a molecular chaperone. Progress in Retinal and Eye Research, 18(4), 463–509. https://doi.org/10.1016/s1350-9462(98)00030-5
  • Dzubiella, J. (2008). Salt-specific stability and denaturation of a short salt-bridge-forming α-helix. Journal of the American Chemical Society, 130(42), 14000–14007. https://doi.org/10.1021/ja805562g
  • Fichna, J. P., Potulska-Chromik, A., Miszta, P., Redowicz, M. J., Kaminska, A. M., Zekanowski, C., & Filipek, S. (2017). A novel dominant D109A CRYAB mutation in a family with myofibrillar myopathy affects αB-crystallin structure. BBA Clinical, 7, 1–7. https://doi.org/10.1016/j.bbacli.2016.11.004
  • Frankfater, C., Bozeman, S. L., Hsu, F.-F., & Andley, U. P. (2020). Alpha-crystallin mutations alter lens metabolites in mouse models of human cataracts. PloS One, 15(8), e0238081. https://doi.org/10.1371/journal.pone.0238081
  • Ghahramani, M., Yousefi, R., Krivandin, A., Muranov, K., Kurganov, B., & Moosavi-Movahedi, A. A. (2020). Kinetic data analysis of chaperone-like activity of Wt, R69C and D109H αB-crystallins. Data in Brief, 28, 104922. https://doi.org/10.1016/j.dib.2019.104922
  • Ghahramani, M., Yousefi, R., Niazi, A., & Kurganov, B. (2020). The congenital cataract‐causing mutations P20R and A171T are associated with important changes in the amyloidogenic feature, structure and chaperone‐like activity of human αB‐crystallin. Biopolymers, 111(5), e23350. https://doi.org/10.1002/bip.23350
  • Ghorbani, M., Soleymani, H., Allahverdi, A., Shojaeilangari, S., & Naderi-Manesh, H. (2020). Effects of natural compounds on conformational properties and hairpin formation of amyloid-β42 monomer: Docking and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 38(11), 3371–3383. https://doi.org/10.1080/07391102.2019.1664934
  • Ghosh, J. G., Shenoy, A. K., & Clark, J. I. (2006). N-and C-terminal motifs in human αB crystallin play an important role in the recognition, selection, and solubilization of substrates. Biochemistry, 45(46), 13847–13854. https://doi.org/10.1021/bi061471m
  • Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective. ELECTROPHORESIS, 30(S1), S162–S173. https://doi.org/10.1002/elps.200900140
  • Guseman, A. J., & Gronenborn, A. M. (2019). Isomerization as the secret Achilles’ heel of long-lived proteins. Elsevier.
  • Hashmi, M. A., Malik, A., Arsalan, A., Khan, M. A., & Younus, H. (2023). Elucidation of kinetic and structural properties of eye lens ζ-crystallin: An in vitro and in silico approach. Journal of Biomolecular Structure & Dynamics, 41(4), 1178–1192. https://doi.org/10.1080/07391102.2021.2017351
  • Haslbeck, M., & Vierling, E. (2015). A first line of stress defense: Small heat shock proteins and their function in protein homeostasis. Journal of Molecular Biology, 427(7), 1537–1548. https://doi.org/10.1016/j.jmb.2015.02.002
  • Hayashi, J., & Carver, J. A. (2020). The multifaceted nature of αB-crystallin. Cell Stress & Chaperones, 25(4), 639–654. https://doi.org/10.1007/s12192-020-01098-w
  • Hilton, G. R., Hochberg, G. K., Laganowsky, A., McGinnigle, S. I., Baldwin, A. J., & Benesch, J. L. (2013). C-terminal interactions mediate the quaternary dynamics of αB-crystallin. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1617), 20110405. https://doi.org/10.1098/rstb.2011.0405
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jehle, S., Rajagopal, P., Bardiaux, B., Markovic, S., Kühne, R., Stout, J. R., Higman, V. A., Klevit, R. E., van Rossum, B.-J., & Oschkinat, H. (2010). Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers. Nature Structural & Molecular Biology, 17(9), 1037–1042. https://doi.org/10.1038/nsmb.1891
  • Jehle, S., Vollmar, B. S., Bardiaux, B., Dove, K. K., Rajagopal, P., Gonen, T., Oschkinat, H., & Klevit, R. E. (2011). N-terminal domain of αB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 108(16), 6409–6414. https://doi.org/10.1073/pnas.1014656108
  • Kaiser, C. J. O., Peters, C., Schmid, P. W. N., Stavropoulou, M., Zou, J., Dahiya, V., Mymrikov, E. V., Rockel, B., Asami, S., Haslbeck, M., Rappsilber, J., Reif, B., Zacharias, M., Buchner, J., & Weinkauf, S. (2019). The structure and oxidation of the eye lens chaperone αA-crystallin. Nature Structural & Molecular Biology, 26(12), 1141–1150. https://doi.org/10.1038/s41594-019-0332-9
  • Karunakaran, R., & Srikumar, P. (2018). A molecular dynamics approach to explore the structural characterization of cataract causing mutation R58H on human γD crystallin. Molecular and Cellular Biochemistry, 449(1-2), 55–62. https://doi.org/10.1007/s11010-018-3342-8
  • Khan, A. O., Safieh, L. A., & Alkuraya, F. S. (2010). Later retinal degeneration following childhood surgical aphakia in a family with recessive CRYAB mutation (p. R56W). Ophthalmic Genetics, 31(1), 30–36. https://doi.org/10.3109/13816810903452047
  • Kubiak, K., Kowalska, M., & Nowak, W. (2003). Molecular dynamics study of early events during photooxidation of eye lens protein γB-crystallin. Journal of Molecular Structure: THEOCHEM, 630(1-3), 315–325. https://doi.org/10.1016/S0166-1280(03)00161-1
  • Laganowsky, A., Benesch, J. L. P., Landau, M., Ding, L., Sawaya, M. R., Cascio, D., Huang, Q., Robinson, C. V., Horwitz, J., & Eisenberg, D. (2010). Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Science: A Publication of the Protein Society, 19(5), 1031–1043. https://doi.org/10.1002/pro.380
  • Liu, J., Wang, G., Lin, Q., Liang, W., Gao, Z., Mu, P., Li, G., & Song, L. (2018). Systematic analysis of the lysine malonylome in common wheat. BMC Genomics. 19(1), 1–10. https://doi.org/10.1186/s12864-018-4535-y
  • Michiel, M., Skouri-Panet, F., Duprat, E., Simon, S., Férard, C., Tardieu, A., & Finet, S. (2009). Abnormal assemblies and subunit exchange of αB-crystallin R120 mutants could be associated with destabilization of the dimeric substructure. Biochemistry, 48(2), 442–453. https://doi.org/10.1021/bi8014967
  • Panda, A. K., Nandi, S. K., Chakraborty, A., Nagaraj, R. H., & Biswas, A. (2016). Differential role of arginine mutations on the structure and functions of α-crystallin. Biochimica et Biophysica Acta, 1860(1 Pt B), 199–210. https://doi.org/10.1016/j.bbagen.2015.06.004
  • Parchekani, J., Allahverdi, A., Taghdir, M., & Naderi-Manesh, H. (2022). Design and simulation of the liposomal model by using a coarse-grained molecular dynamics approach towards drug delivery goals. Scientific Reports, 12(1), 1–15. https://doi.org/10.1038/s41598-022-06380-8
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pasta, S. Y., Raman, B., Ramakrishna, T., & Rao, C. M. (2002). Role of the C-terminal extensions of α-crystallins: Swapping the C-terminal extension of αA-crystallin to αB-crystallin results in enhanced chaperone activity. The Journal of Biological Chemistry, 277(48), 45821–45828. https://doi.org/10.1074/jbc.M206499200
  • Pasta, S. Y., Raman, B., Ramakrishna, T., & Rao, C. M. (2004). The IXI/V motif in the C-terminal extension of alpha-crystallins: Alternative interactions and oligomeric assemblies. Mol Vis, 10(78), 655–662.
  • Pescosolido, N., Barbato, A., Giannotti, R., Komaiha, C., & Lenarduzzi, F. (2016). Age-related changes in the kinetics of human lenses: Prevention of the cataract. International Journal of Ophthalmology, 9(10), 1506.
  • Shiels, A., & Hejtmancik, J. F. (2017). Mutations and mechanisms in congenital and age-related cataracts. Experimental Eye Research, 156, 95–102. https://doi.org/10.1016/j.exer.2016.06.011
  • Shiels, A., & Hejtmancik, J. F. (2019). Biology of inherited cataracts and opportunities for treatment. Annual Review of Vision Science, 5, 123–149. https://doi.org/10.1146/annurev-vision-091517-034346
  • Simon, S., Dimitrova, V., Gibert, B., Virot, S., Mounier, N., Nivon, M., Kretz-Remy, C., Corset, V., Mehlen, P., & Arrigo, A.-P. (2013). Analysis of the dominant effects mediated by wild type or R120G mutant of αB-crystallin (HspB5) towards Hsp27 (HspB1). PloS One, 8(8), e70545. https://doi.org/10.1371/journal.pone.0070545
  • Soleymani, H., Ghorbani, M., Allahverdi, A., Shojaeilangari, S., & Naderi-Manesh, H. (2019). Activation of human insulin by vitamin E: A molecular dynamics simulation study. Journal of Molecular Graphics & Modelling, 91, 194–203. https://doi.org/10.1016/j.jmgm.2019.06.006
  • Sprague-Piercy, M. A., Rocha, M. A., Kwok, A. O., & Martin, R. W. (2021). α-crystallins in the vertebrate eye lens: Complex oligomers and molecular chaperones. Annual Review of Physical Chemistry, 72(1), 143–163. https://doi.org/10.1146/annurev-physchem-090419-121428
  • Sreelakshmi, Y., & Sharma, K. K. (2006). The interaction between alphaA-and alphaB-crystallin is sequence-specific. Mol Vis, 12, 581–587.
  • Swetha, R. G., Ramaiah, S., & Anbarasu, A. (2016). Molecular dynamics studies on D835N mutation in FLT3—its impact on FLT3 protein structure. Journal of Cellular Biochemistry, 117(6), 1439–1445. https://doi.org/10.1002/jcb.25434
  • Treweek, T. M., Ecroyd, H., Williams, D. M., Meehan, S., Carver, J. A., & Walker, M. J. (2007). Site-directed mutations in the C-terminal extension of human αB-crystallin affect chaperone function and block amyloid fibril formation. PloS One, 2(10), e1046. https://doi.org/10.1371/journal.pone.0001046
  • Tripathi, S., Srivastava, G., & Sharma, A. (2016). Molecular dynamics simulation and free energy landscape methods in probing L215H, L217R and L225M βI-tubulin mutations causing paclitaxel resistance in cancer cells. Biochemical and Biophysical Research Communications, 476(4), 273–279. https://doi.org/10.1016/j.bbrc.2016.05.112
  • Yang, X., Xu, J., Fu, C., Jia, Z., Yao, K., & Chen, X. (2020). The cataract-related S39C variant increases γS-crystallin sensitivity to environmental stress by destroying the intermolecular disulfide cross-links. Biochemical and Biophysical Research Communications, 526(2), 459–465. https://doi.org/10.1016/j.bbrc.2020.03.072
  • Zhang, K., Zhu, X., & Lu, Y. (2018). The proteome of cataract markers: Focus on crystallins. Advances in Clinical Chemistry, 86, 179–210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.