323
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Carbothermic Reduction of Alumina by Natural Gas to Aluminum and Syngas: A Thermodynamic Study

, &
Pages 352-361 | Published online: 15 May 2012
 

Abstract

The carbothermic reduction of alumina to aluminum by methane is analyzed by thermochemical equilibrium calculations in order to determine its thermodynamic constraints. Calculations predict that in the temperature range 2300–2500°C at 1 bar pressure, the reaction Al2O3 + 3CH4 = 2Al +6H2 + 3CO should occur without significant interference by the formation of unwanted byproducts such as Al2O, Al4C3, and Al-oxycarbides, and with higher yields than by using solid carbonaceous compounds as reducing agent. The reaction was examined for several initial Al2O3/CH4 molar ratios. The proposed process may be carried out in a fluidized bed reactor using concentrated solar energy, induction furnaces, or electric discharges as sources of high-temperature process heat. An important advantage of such a process would be the coproduction of syngas, with the molar ratio H2/CO = 2, suitable for the synthesis of liquid hydrocarbon fuels and polymeric materials.

ACKNOWLEDGMENTS

The research leading to these results has received partial funding from the European Union Seventh Framework Programme ([FP7/2007-2013]) under grant agreement no. ENER/FP7EN/249710/ENEXAL.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.