115
Views
10
CrossRef citations to date
0
Altmetric
Articles

MORPHOLOGICAL AND BIOCHEMICAL CHANGES INDUCED BY ARSENIC TRIOXIDE IN NEUROBLASTOMA CELL LINES

, , , , , , , & , MD, Ph.D show all
Pages 609-621 | Received 26 Jan 2005, Accepted 06 Mar 2005, Published online: 09 Jul 2009
 

Abstract

Arsenic trioxide has recently been shown to inhibit growth and induce apoptosis in a variety of hematologic malignancies, but very little is known about its effects on solid tumors and especially on neuroblastoma cells that have self-differentiating characteristics. To demonstrate the growth inhibition induced in neuroblastoma cells (the SH-SY5Y and SK-N-AS cell line) and acute promyelocytic leukemia cells (HL-60) by arsenic trioxide (As2O3), the viable cell numbers were counted after trypan blue staining. Apoptosis was assessed by the cell morphology, by flow cytometry with annexin-V staining, and by Western blot analysis for the apoptosis-related proteins (bcl-2 and PARP). To decide the dose for the clinical application of As2O3, normal peripheral blood lymphocytes were also examined. The growth and survival of the SH-SY5Y and SK-N-AS cells were markedly inhibited by As2O3 treatment at a 3 μM concentration before the changes of the normal lymphocytes were observed. The apoptotic cells showed a shrunken cell nucleus, and an increase in the number and balloon-like swelling of the mitochondria at 72 h after the As2O3 was added. Apoptosis of the annexin-V-positive cell proportion in the neuroblastoma cell lines was increased with increasing the exposure time and the concentration of As2O3, just like the HL-60 cells. Bcl-2 downregulation and PARP degradation were also noted all the cell lines, but these changes were not statistically significant among the 3 cell lines. Taken together, these results indicate that As2O3 is an excellent candidate as a therapeutic agent for the treatment of neuroblastoma.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.