105
Views
0
CrossRef citations to date
0
Altmetric
Articles

Classical cumulant dynamics for statistical chemical physics

, , , , , , , , , , , & show all
Pages 1260-1268 | Received 09 Feb 2017, Accepted 29 Mar 2017, Published online: 26 May 2017
 

Abstract

We developed classical cumulant dynamics for statistical mechanics in order to evaluate thermal equilibrium properties of a given system. The equations of motion (EOMs) for momentum and position were formulated together with those for second-order cumulant variables, which are functions of second-order moments. From the Kramers equation, and simplified EOMs were obtained by assuming a stationary state limit. The present method combined with the umbrella integration method was applied to evaluate free energy surface of a seven-particle Morse cluster. With low computational costs, the present approach gave almost equivalent free energy barrier those by conventional classical molecular dynamics.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.