105
Views
0
CrossRef citations to date
0
Altmetric
Articles

Classical cumulant dynamics for statistical chemical physics

, , , , , , , , , , , & show all
Pages 1260-1268 | Received 09 Feb 2017, Accepted 29 Mar 2017, Published online: 26 May 2017

References

  • Chandler D. Introduction to modern statistical mechanics. New York, (NY): Oxford University Press; 1986.
  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. San Diego (CA): Academic Press; 1996.
  • Marx D, Hutter J. Ab initio molecular dynamics. Cambridge (UK): Cambridge University Press; 2009.10.1017/CBO9780511609633
  • Shigeta Y, Takatsuka K. Dynamic charge fluctuation of endohedral fullerene with coencapsulated Be atom and H2. J Stat Phys. 2005;123:131101 (4 pages). 10.1063/1.2055287
  • Cao J, Berne BJ. A Born–Oppenheimer approximation for path integrals with an application to electron solvation in polarizable fluids. J Chem Phys. 1993;99:2902–2916.10.1063/1.465198
  • Tuckerman ME, Marx D. Heavy-atom skeleton quantization and proton tunneling in ‘intermediate-barrier’ hydrogen bonds. Phys Rev Lett. 2001;86:4946–4949.10.1103/PhysRevLett.86.4946
  • Shiga M, Tachikawa M, Miura S. A unified scheme for ab initio molecular orbital theory and path integral molecular dynamics. J Chem Phys. 2001;115:9149–9159.10.1063/1.1407289
  • Tachikawa M, Shiga M. Geometrical H/D isotope effect on hydrogen bonds in charged water clusters. JACS. 2005;127:11908–11909.10.1021/ja053135j
  • NIC series Vol. 10. Quantum simulations of complex many-body systems: from theory to algorithms and references cited therein.
  • Liu J. Recent advances in the linearized semiclassical initial value representation/classical Wigner model for the thermal correlation function. Int J Quantum Chem. 2015;115:657–670. and references cited therein.10.1002/qua.24872
  • Wang F, Landau DP. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett. 2001;86:2050–2053.10.1103/PhysRevLett.86.2050
  • Berg BA, Neuhaus T. Multicanonical ensemble: a new approach to simulate first-order phase transitions. Phys Rev Lett. 1992;68:9–12.10.1103/PhysRevLett.68.9
  • Hansmann UHE, Okamoto Y, Eisenmenger F. Molecular dynamics, Langevin, and hybrid Monte Carlo simulations in multicanonical ensemble. Chem Phys Lett. 1996;259:321–330.10.1016/0009-2614(96)00761-0
  • Hukushima K, Nemoto K. Exchange Monte Carlo method and application to spin glass simulations. J Phys Soc Jpn. 1996;65:1604–1608.10.1143/JPSJ.65.1604
  • Hukushima K, Takayama H, Nemoto K. Application of an extended ensemble method to spin glasses. Int J Mod Phys C. 1996;7:337–344.10.1142/S0129183196000272
  • Nakajima N, Nakamura H, Kidera A. Multicanonical ensemble generated by molecular dynamics simulation for enhanced conformational sampling of peptides. J Phys Chem B. 1997;101:817–824.10.1021/jp962142e
  • Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett. 1999;314:141–151.10.1016/S0009-2614(99)01123-9
  • Tsallis C. Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys. 1988;52:479–487.10.1007/BF01016429
  • Tsallis C. Introduction to nonextensive statistical mechanics: approaching a complex world. New York (NY): Springer, 2009.
  • Kästner J, Thiel W. Analysis of the statistical error in umbrella sampling simulations by umbrella integration. J Chem Phys. 2006;123:144104 (5 pages).
  • Kumar S, Rosenberg JM, Bouzida D, et al. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Phys Rev Lett. 1992;13:1011–1021.10.1002/(ISSN)1096-987X
  • Straub JE, Karplus M. Energy equipartitioning in the classical time-dependent Hartree approximation. J Chem Phys. 1991;94:6737–6739.10.1063/1.460250
  • Amara P, Hsu D, Straub JE. Global energy minimum searches using an approximate solution of the imaginary time Schrödinger equation. J Phys Chem. 1993;97:6715–6721.10.1021/j100127a023
  • Ma J, Hsu D, Straub JE. Approximate solution of the classical Liouville equation using Gaussian phase packet dynamics: application to enhanced equilibrium averaging and global optimization. J Chem Phys. 1993;99:4024–4035.10.1063/1.466098
  • Ma J, Straub JE. Simulated annealing using the classical density distribution. J Chem Phys. 1994;101:533–541.10.1063/1.468163
  • Ma J, Straub JE. Simulated annealing using the classical density distribution. J Chem Phys. 1995;103:9113.10.1063/1.470733
  • Prezhdo OV, Pereverzev YV. Quantized Hamilton dynamics. J Chem Phys. 2000;113:6557–6565.10.1063/1.1290288
  • Prezhdo OV, Pereverzev YV. Quantized Hamilton dynamics for a general potential. J Chem Phys. 2002;116:4450–4461.10.1063/1.1451060
  • Heatwole E, Prezhdo OV. A canonical averaging in the second-order quantized Hamilton dynamics. J Chem Phys. 2004;121:10967–10975.10.1063/1.1812749
  • Prezhdo OV. Quantized Hamilton dynamics. Theor Chem Acc. 2006;116:206–218.10.1007/s00214-005-0032-x
  • Miyachi H, Shigeta Y, Hirao K. Real time mixed quantum-classical dynamics with ab initio quartic force field: application to molecular vibrational frequency analysis. Chem Phys Lett. 2006;432:585–590.10.1016/j.cplett.2006.10.087
  • Prezhdo OV, Brooks C. Quantum backreaction through the Bohmian particle. Phys Rev Lett. 2001;86:3215–3219.10.1103/PhysRevLett.86.3215
  • Pereverzev A, Pereverzev YV, Prezhdo OV. Dissipation of classical energy in nonlinear quantum systems. J Chem Phys. 2008;128:134107 (8 pages). 10.1063/1.2844597
  • Shigeta Y, Miyachi H, Hirao K. Quantal cumulant dynamics: general theory. Int J Quantum Chem. 2006;125:244102 (9 pages). 10.1063/1.2404677
  • Shigeta Y, Miyachi H, Hirao K. Quantal cumulant dynamics II: an efficient time-reversible integrator. Chem Phys Lett. 2007;443:414–419.10.1016/j.cplett.2007.06.064
  • Shigeta Y, Miyachi H, Matsui T, et al. Dynamic quantum isotope effects on multiple proton-transfer reactions. Bull Chem Soc Jpn. 2008;81:1230–1240.10.1246/bcsj.81.1230
  • Shigeta Y. Distribution function in quantal cumulant dynamics. J Chem Phys. 2008;128:161103.10.1063/1.2917799
  • Shigeta Y. Quantal cumulant dynamics III: a quantum confinement under a magnetic field. Chem Phys Lett. 2008;461:310–315.10.1016/j.cplett.2008.06.075
  • Shigeta Y. Molecular theory including quantum effects and thermal fluctuations. Bull Chem Soc Jpn. 2009;82:1323–1340.10.1246/bcsj.82.1323
  • Shigeta Y, Inui T, Baba T, et al. Qantal cumulant mechanics and dynamics for multi-dimensional quantum many-body clusters. Int J Quantum Chem. 2013;113:348–355.10.1002/qua.24052
  • Shigeta Y, Harada R, Kayanuma M, et al. Quantal cumulant dynamics for real-time simulations of quantum many-body systems. Int J Quantum Chem. 2015;115:300–308.10.1002/qua.24820
  • Shigeta Y, Miyachi H, Matsui T, et al. Quantum theory in terms of cumulant variables. In: Piecuch P, Maruani J, Delgado-Barrio G, Wilson S. editors. Progress in theoretical chemistry and physics, Vol. 20, Advances in the theory of atomic and molecular systems – dynamics, spectroscopy, clusters, and nanostructures. Germany: Springer; 2009. p. 3–34.
  • Pereverzev YV, Pereverzev A, Shigeta Y, et al. Correlation functions in quantized Hamilton dynamics and quantal cumulant dynamics. Phys Rev A. 2008;129:144104 (7 pages).10.1063/1.2990005
  • Langevin P. On the theory of Brownian motion. C. R. Acad Sci (Paris). 1908;146:530–533.
  • Risken H. The Fokker-Planck equation. 2nd ed. Berlin: Springer; 1996.
  • Kubo R. Generalized cumulant expansion method. J Phys Soc Jpn. 1962;17:1100–1120.10.1143/JPSJ.17.1100
  • Mayer JE. The statistical mechanics of condensing systems. I. J Chem Phys. 1937;5:67–73.10.1063/1.1749933
  • Feynman RP, Kleinert H. Effective classical partition function. Phys Rev A. 1986;34:5080–5084.10.1103/PhysRevA.34.5080
  • Liu J, Miller WH. Using the thermal Gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions. J Chem Phys. 2006;125:224104 (13 pages).
  • Liu J Miller WH. A simple model for the treatment of imaginary frequencies in chemical reaction rates and molecular liquids. J Chem Phys. 2009;131:074113 (19 pages).10.1063/1.3202438
  • Frantsuzov PA, Mandelstam VA. Quantum statistical mechanics with Gaussians: equilibrium properties of van der Waals clusters. J Chem Phys. 2001;121:9247–9256.
  • Frantsuzov PA, Mandelshtam VA. Equilibrium properties of quantum water clusters by the variational Gaussian wavepacket method. J Chem Phys. 2008;128:094304 ( 7 pages). 10.1063/1.2833004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.