296
Views
6
CrossRef citations to date
0
Altmetric
Articles

Flat-histogram extrapolation as a useful tool in the age of big data

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 395-407 | Received 19 Nov 2019, Accepted 17 Mar 2020, Published online: 13 Apr 2020
 

ABSTRACT

Here we review recent work by the authors to revisit the concept of extrapolating thermodynamic properties of classical systems using statistical mechanical principles. Specifically, we discuss how the combination of these principles with biased sampling techniques enables the prediction of free energy landscapes and other detailed information, such as structural properties, of the system in question. Remarkably accurate estimates of physical properties across a broad range of conditions have been achieved using this approach, greatly reducing the number of simulations needed to explore a given system's behaviour. While approximate, these extrapolations significantly amplify the amount of reasonably accurate information that can be extracted from simulations enabling a small set of them to feed data-intensive regression algorithms such as neural networks. Thus, this extrapolation methodology represents a useful tool for performing tasks such as high-throughput screening of physical properties, optimising force field parameters, exploring equilibrium phase behaviour, and enabling theory-guided data science for these systems.

Acknowledgments

Contribution of the National Institute of Standards and Technology (NIST), not subject to U.S. Copyright. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.