296
Views
6
CrossRef citations to date
0
Altmetric
Articles

Flat-histogram extrapolation as a useful tool in the age of big data

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 395-407 | Received 19 Nov 2019, Accepted 17 Mar 2020, Published online: 13 Apr 2020

References

  • Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. 2nd ed. San Diego: Academic Press Inc.; 2001. (Computational science series; 1).
  • de Pablo JJ, Escobedo FA. Molecular simulations in chemical engineering: present and future. AIChE J. 2002;48:2716–2721. doi: 10.1002/aic.690481202
  • Krylov A, Windus TL, Barnes T, et al. Perspective: computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. J Chem Phys. 2018;149(18):180901. doi: 10.1063/1.5052551
  • Winsberg E. Computer simulations in science. In: Zalta EN, editor. The stanford encyclopedia of philosophy (Winter edition); 2019. https://plato.stanford.edu/archives/win2019/entries/simulations-science/.
  • Bell G, Hey T, Szalay A. Beyond the data deluge. Science. 2009;5919:1297–1298. doi: 10.1126/science.1170411
  • Hey T, Tansley S, Tolle K, editors. The fourth paradigm: data-intensive scientific discovery. Vol. 1. Redmond (WA): Microsoft Research; 2009.
  • Hastie Tz, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. Vol. 1. Springer; 2009.
  • Jadrich RB, Lindquist BA, Truskett TM. Recent advances in accelerated discovery through machine learning and statistical inference; 2017. arXiv preprint arXiv:1706.05405.
  • Williams CKI, Rasmussen CE. Gaussian processes for machine learning. Vol. 2. Cambridge (MA): MIT Press; 2006.
  • Coifman RR, Lafon S. Diffusion maps. Appl Comput Harmon Anal. 2006;21:5–30. doi: 10.1016/j.acha.2006.04.006
  • Jolliffe I. Principal component analysis. Berlin: Springer Berlin Heidelberg; 2011; p. 1094–1096.
  • Buchanan M. The power of machine learning. Nat Phys. 2019;15:1208. doi: 10.1038/s41567-019-0737-8
  • Desgranges C, Delhommelle J. A new approach for the prediction of partition functions using machine learning techniques. J Chem Phys. 2018;149:044118.
  • Groven SD, Desgranges C, Delhommelle J. Prediction of the boiling and critical points of polycyclic aromatic hydrocarbons via Wang-Landau simulations and machine learning. Fluid Phase Equilib. 2019;484:225–231. doi: 10.1016/j.fluid.2018.11.030
  • Desgranges C, Delhommelle J. Determination of mixture properties via a combined expanded Wang-Landau simulations-machine learning approach. Chem Phys Lett. 2019;715:1–6. doi: 10.1016/j.cplett.2018.11.009
  • Sun Y, DeJaco RF, Siepmann JI. Deep neural network learning of complex binary sorption equilibria from molecular simulation data. Chem Sci. 2019;10:4377–4388. doi: 10.1039/C8SC05340E
  • Gopalan A, Bucior BJ, Bobbitt NS, et al. Prediction of hydrogen adsorption in nanoporous materials from the energy distribution of adsorption sites. Mol Phys. 2019;117(23–24):3683–3694. doi: 10.1080/00268976.2019.1658910
  • Berressem F, Khadilkar MR, Nikoubashman A. Boltzmann: Deriving effective pair potentials and equations of state using neural networks; 2019. arXiv preprint arXiv:1908.02448.
  • Behler J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J Chem Phys. 2011;134:074106. doi: 10.1063/1.3553717
  • Sidky H, Whitmer JK. Learning free energy landscapes using artificial neural networks. J Chem Phys. 2018;148:104111.
  • Long AW, Ferguson AL. Rational design of patchy colloids via landscape engineering. Mol Syst Design Eng. 2018;3:49–65. doi: 10.1039/C7ME00077D
  • Seo B, Kim S, Lee M, et al. Driving conformational transitions in the feature space of autoencoder neural network. J Phys Chem C. 2018;122(40):23224–23229. doi: 10.1021/acs.jpcc.8b08496
  • Adorf CS, Moore TC, Melle YJU, et al. Analysis of self-assembly pathways with unsupervised machine learning algorithms. J Phys Chem B. 2020;124:69–78. doi: 10.1021/acs.jpcb.9b09621
  • Chipot C, Pohorille A. Free energy calculations: theory and applications in chemistry and biology. Berlin: Springer; 2007.
  • Mahynski NA, Blanco MA, Errington JR, et al. Predicting low-temperature free energy landscapes with flat-histogram Monte Carlo methods. J Chem Phys. 2017;146(7):074101. doi: 10.1063/1.4975331
  • Mahynski NA, Errington JR, Shen VK. Temperature extrapolation of multicomponent grand canonical free energy landscapes. J Chem Phys. 2017;147:054105.
  • Mahynski NA, Errington JR, Shen VK. Multivariable extrapolation of grand canonical free energy landscapes. J Chem Phys. 2017;147:234111.
  • Hatch HW, Jiao S, Mahynski NA, et al., Communication: predicting virial coefficients and alchemical transformations by extrapolating Mayer-sampling Monte Carlo simulations. J Chem Phys. 2017;147:231102. doi: 10.1063/1.5016165
  • Mahynski NA, Jiao S, Hatch HW, et al. Predicting structural properties of fluids by thermodynamic extrapolation. J Chem Phys. 2018;148:194105. doi: 10.1063/1.5026493
  • Witman M, Mahynski NA, Smit B. Flat-histogram Monte Carlo as an efficient tool to evaluate adsorption processes involving rigid and deformable molecules. J Chem Theory Comput. 2018;14:6149–6158. doi: 10.1021/acs.jctc.8b00534
  • Karpatne A, Atluri G, Faghmous JH, et al. Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans Knowl Data Eng. 2017;29:2318–2331. doi: 10.1109/TKDE.2017.2720168
  • Zwanzig RW. High temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys. 1954;22:1420–1426. doi: 10.1063/1.1740409
  • Escobedo FA. Novel pseudoensembles for simulation of multicomponent phase equilibria. J Chem Phys. 1998;108(21):8761–8772. doi: 10.1063/1.475396
  • Szalai I, Liszi J, Boda D. The NVT plus test particle method for the determination of the vapour-liquid equilibria of pure fluids. Chem Phys Lett. 1995;246:214–220. doi: 10.1016/0009-2614(95)01100-N
  • Boda D, Liszi J, Szalai I. An extension of the NpT plus test particle method for the determination of the vapour-liquid equilibria of pure fluids. Chem Phys Lett. 1995;235:140–145. doi: 10.1016/0009-2614(95)00066-D
  • Boda D, Liszi J, Szalai I. A new simulation method for the determination of the vapour-liquid equilibria in the grand canonical ensemble. Chem Phys Lett. 1996;256:474–482. doi: 10.1016/0009-2614(96)00423-X
  • Boda D, Kristf T, Liszi J, et al. The extrapolation of the vapour-liquid equilibrium curves of pure fluids in the isothermal Gibbs ensemble. Mol Phys. 2002;100:1989–2000. doi: 10.1080/00268970210130966
  • Kristóf T, Liszi J, Boda D. The extrapolation of phase equilibrium curves of mixtures in the isobaric-isothermal Gibbs ensemble. Mol Phys. 2002;100(21):3429–3441. doi: 10.1080/00268970210158641
  • Escobedo FA. Mapping coexistence lines via free-energy extrapolation: application to order-disorder phase transitions of hard-core mixtures. J Chem Phys. 2014;140:094102. doi: 10.1063/1.4866764
  • Hummer G, Szabo A. Calculation of free-energy differences from computer simulations of initial and final states. J Chem Phys. 1996;105:2004–2010. doi: 10.1063/1.472068
  • Chapman WG, Gubbins KE, Jackson G, et al. SAFT: equation-of-state solution model for associating fluids. Fluid Phase Equilib. 1989;52:31–38. doi: 10.1016/0378-3812(89)80308-5
  • Müller EA, Jackson G. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations. Annu Rev Chem Biomol Eng. 2014;5(1):405–427. doi: 10.1146/annurev-chembioeng-061312-103314
  • Landau DP, Binder K. A guide to Monte Carlo simulations in statistical physics. Cambridge: Cambridge University Press; 2009.
  • Shell MS, Debenedetti PG, Panagiotopoulos AZ. An improved Monte Carlo method for direct calculation of the density of states. J Chem Phys. 2003;119:9406. doi: 10.1063/1.1615966
  • Rane KS, Murali S, Errington JR. Monte Carlo simulation methods for computing liquid–vapor saturation properties of model systems. J Chem Theory Comput. 2013;9(6):2552–2566. doi: 10.1021/ct400074p
  • Wang F, Landau DP. Efficient, multiple-range random walk algorithm to calculate density of states. Phys Rev Lett. 2001;86(10):2050–2053. doi: 10.1103/PhysRevLett.86.2050
  • Landau DP, Tsai S-H, Exler M. A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling. Am J Phys. 2004;72(10):1294–1302. doi: 10.1119/1.1707017
  • Wang J-S, Tay TK, Swendsen RH. Transition matrix Monte Carlo reweighting and dynamics. Phys Rev Lett.. 1999;82(3):476. doi: 10.1103/PhysRevLett.82.476
  • Wang F, Landau DP. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys Rev E. 2001;64:056101.
  • Shen VK, Errington JR. Determination of fluid-phase behavior using transition-matrix Monte Carlo: binary Lennard-Jones mixtures. J Chem Phys. 2005;122(6):064508. doi: 10.1063/1.1844372
  • Shen VK, Errington JR. Determination of surface tension in binary mixtures using transition-matrix Monte Carlo. J Chem Phys. 2006;124(2):024721. doi: 10.1063/1.2159472
  • Mittal J, Shen VK, Errington JR, et al. Confinement, entropy, and single-particle dynamics of equilibrium hard-sphere mixtures. J Chem Phys. 2007;127:154513. doi: 10.1063/1.2795699
  • Kofke DA, Glandt ED. Nearly monodisperse fluids. I. Monte Carlo simulations of Lennard-Jones particles in a semigrand ensemble. J Chem Phys. 1987;87:4881–4890. doi: 10.1063/1.452800
  • Kofke DA, Glandt ED. Monte Carlo simulation of multicomponent equilibria in a semigrand canonical ensemble. Mol Phys. 1988;64:1105–1131. doi: 10.1080/00268978800100743
  • Potoff JJ, Panagiotopoulos AZ. Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture. J Chem Phys. 1998;109:10914. doi: 10.1063/1.477787
  • Panagiotopoulos AZ, Reid RC. On the relationship between pairwise fluctuations and thermodynamic derivatives. J Chem Phys. 1986;85(8):4650. doi: 10.1063/1.451761
  • Debenedetti PG. On the relationship between principal fluctuations and stability coefficients in multicomponent systems. J Chem Phys. 1986;84(3):1778. doi: 10.1063/1.450424
  • Ursell HD. The evaluation of Gibbs' phase-integral for imperfect gases. Math Proc Camb Philos Soc. 1927;23(6):685–697. doi: 10.1017/S0305004100011191
  • Errington JR. Prewetting transitions for a model argon on solid carbon dioxide system. Langmuir. 2004;20:3798–3804. doi: 10.1021/la0360106
  • Errington JR. Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation. J Chem Phys. 2003;118(22):9915–9925. doi: 10.1063/1.1572463
  • Shirts MR, Chodera JD. Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys. 2008;129:124105.
  • Tan Z, Gallicchio E, Lapelosa M, et al. Theory of binless multi-state free energy estimation with applications to protein-ligand binding. J Chem Phys. 2012;136:144102. doi: 10.1063/1.3701175
  • Ben-Naim A. The Kirkwood-Buff integrals for one-component liquids. J Chem Phys. 2008;128:234501.
  • Mastny EA, de Pablo JJ. Melting line of the Lennard-Jones system, infinite size, and full potential. J Chem Phys. 2007;127:104504.
  • Yasuoka K, Matsumoto M. Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid. J Chem Phys. 1998;109(19):8451–8462. doi: 10.1063/1.477509
  • Rosenbluth MN, Rosenbluth AW. Monte Carlo calculation of the average extension of molecular chains. J Chem Phys. 1955;23(2):356–359. doi: 10.1063/1.1741967
  • Witman M, Wright B, Smit B. Simulating enhanced methane deliverable capacity of guest responsive pores in intrinsically flexible MOFs. J Phys Chem Lett. 2019;10(19):5929–5934. doi: 10.1021/acs.jpclett.9b02449
  • Hatch HW, Jiao S, Mahynski NA, et al. Communication: predicting virial coefficients and alchemical transformations by extrapolating Mayer-sampling Monte Carlo simulations. J Chem Phys. 2017;147:231102. doi: 10.1063/1.5016165
  • Hansen J-P, McDonald IR. Theory of simple liquids. Burlington (MA): Elsevier; 1990.
  • Noro MG, Frenkel D. Extended corresponding-states behavior for particles with variable range attractions. J Chem Phys. 2000;113:2941–2944. doi: 10.1063/1.1288684
  • Foffi G, Sciortino F. On the possibility of extending the Noro-Frenkel generalized law of correspondent states to nonisotropic patchy interactions. J Phys Chem B. 2007;111(33):9702–9705. doi: 10.1021/jp074253r
  • Hatch HW, Yang S-Y, Mittal J, et al. Self-assembly of trimer colloids: effect of shape and interaction range. Soft Matter. 2016;12:4170–4179. doi: 10.1039/C6SM00473C
  • Benjamin KM, Singh JK, Schultz AJ, et al. Higher-order virial coefficients of water models. J Phys Chem B. 2007;111:11463–11473. doi: 10.1021/jp0710685
  • Shaul KRS, Schultz AJ, Kofke DA, et al. Semiclassical fifth virial coefficients for improved ab initio helium-4 standards. Chem Phys Lett. 2012;531:11–17. doi: 10.1016/j.cplett.2012.02.013
  • Feng C, Schultz AJ, Chaudhary V, et al. Eighth to sixteenth virial coefficients of the Lennard-Jones model. J Chem Phys. 2015;143:044504.
  • Krekelberg WP, Mahynski NA, Shen VK. On the virial coefficients of confined fluids: analytic expressions for the thermodynamic properties of hard particles with attractions in slit and cylindrical pores to second order. J Chem Phys. 2019;150:044704. doi: 10.1063/1.5063898
  • O'Brien CJ, Blanco MA, Costanzo JA, et al. Modulating non-native aggregation and electrostatic protein–protein interactions with computationally designed single-point mutations. Protein Eng Des Sel. 2016;29:231–243. doi: 10.1093/protein/gzw010
  • Blanco MA, Hatch HW, Curtis JE, et al. Evaluating the effects of hinge flexibility on the solution structure of antibodies at concentrated conditions. J Pharm Sci. 2019;108:1663–1674. doi: 10.1016/j.xphs.2018.12.013
  • Hung JJ, Dear BJ, Karouta CA, et al. Protein-protein interactions of highly concentrated monoclonal antibody solutions via static light scattering and influence on the viscosity. J Phys Chem B. 2019;123:739–755. doi: 10.1021/acs.jpcb.8b09527
  • Schultz AJ, Kofke DA. Interpolation of virial coefficients. Mol Phys. 2009;107:1431–1436. doi: 10.1080/00268970902922633
  • Wheatley RJ. Calculation of high-order virial coefficients with applications to hard and soft spheres. Phys Rev Lett. 2013;110:200601. doi: 10.1103/PhysRevLett.110.200601
  • Singh JK, Kofke DA. Mayer sampling: calculation of cluster integrals using free-energy perturbation methods. Phys Rev Lett. 2004;92:220601.
  • Shaul KRS, Schultz AJ, Kofke DA. Mayer-sampling Monte Carlo calculations of uniquely flexible contributions to virial coefficients. J Chem Phys. 2011;135:124101. doi: 10.1063/1.3635773
  • Blanco MA, Sahin E, Robinson AS, et al. Coarse-grained model for colloidal protein interactions, B22, and protein cluster formation. J Phys Chem B. 2013;117:16013–16028. doi: 10.1021/jp409300j
  • Paluch AS, Shen VK, Errington JR. Comparing the use of Gibbs ensemble and grand-canonical transition-matrix Monte Carlo methods to determine phase equilibria. Ind Eng Chem Res. 2008;47:4533–4541. doi: 10.1021/ie800143n
  • Chaudhri A, Zarraga IE, Kamerzell TJ, et al. Coarse-grained modeling of the self-association of therapeutic monoclonal antibodies. J Phys Chem B. 2012;116:8045–8057. doi: 10.1021/jp301140u
  • Calero-Rubio C, Saluja A, Roberts CJ. Coarse-grained antibody models for ‘weak’ protein-protein interactions from low to high concentrations. J Phys Chem B. 2016;120:6592–6605. doi: 10.1021/acs.jpcb.6b04907

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.