601
Views
22
CrossRef citations to date
0
Altmetric
Articles

Synthesis of poly(glutamic acid)-tyramine hydrogel by enzyme-mediated gelation for controlled release of proteins

, &
Pages 111-127 | Received 07 Aug 2014, Accepted 29 Oct 2014, Published online: 24 Nov 2014
 

Abstract

An in situ-formed hydrogel was synthesized by enzymatic cross-linking of poly(γ-glutamic acid)–tyramine conjugates (PGA–Tyr) using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The gelation time ranged from 25 s to 5 min was accomplished by tuning the concentration of HRP, H2O2/Tyr molar ratio and the degree of substitution (DS) of Tyr groups. The storage modulus (G′), cross-link density, and mesh size can be tailored by controlling the H2O2/Tyr ratio and DS. The rheological analysis indicated that the storage modulus (G′) can be tailored from approximately 40 to over 1100 Pa with the increasing H2O2/Tyr ratio and DS. The bovine serum albumin (BSA) was used as model protein and encapsulated into the hydrogel during the enzyme-mediated cross-linking reaction. Controlled release of BSA in vitro from the PGA–Tyr hydrogel was obtained. The release rate and cumulative release amount of encapsulated BSA were manipulated by controlling the H2O2/Tyr ratio and DS. More than 90% of encapsulated BSA was released from the hydrogel with low cross-link density and lager mesh size in 60 h, while only 68% of BSA was released from the hydrogel with high cross-link density and small mesh size. The results indicated that the PGA–Tyr hydrogel is a promising material for the controlled release of therapeutic protein or peptides.

Additional information

Funding

Funding. This work was supported by the National Natural Science Foundation of China [grant number 510030461], [grant number 51263017]; the Natural Science Foundation of Jiangxi Province of China [grant number 20114BAB216022].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.