604
Views
22
CrossRef citations to date
0
Altmetric
Articles

Synthesis of poly(glutamic acid)-tyramine hydrogel by enzyme-mediated gelation for controlled release of proteins

, &
Pages 111-127 | Received 07 Aug 2014, Accepted 29 Oct 2014, Published online: 24 Nov 2014

References

  • Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem. Rev. 2012;112:2853–2888.10.1021/cr200157d
  • Lin CC, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm. Res. 2009;26:631–643.10.1007/s11095-008-9801-2
  • Van Tomme SR, Storm G, Hennink WE. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int. J. Pharm. 2008;355:1–18.10.1016/j.ijpharm.2008.01.057
  • Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 2012;41:2193–2221.10.1039/c1cs15203c
  • Ko DY, Shinde UP, Yeon B, Jeong B. Recent progress of in situ formed gels for biomedical applications. Prog. Polym. Sci. 2013;38:672–701.10.1016/j.progpolymsci.2012.08.002
  • Zelzer M, Todd SJ, Hirst AR, McDonald TO, Ulijn RV. Enzyme responsive materials: design strategies and future developments. Biomater. Sci. 2013;1:11–39.10.1039/c2bm00041e
  • Moreira Teixeira LS, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials. 2012;33:1281–1290.10.1016/j.biomaterials.2011.10.067
  • Kobayashi S, Uyama H, Kimura S. Enzymatic polymerization. Chem. Rev. 2001;101:3793–3818.10.1021/cr990121l
  • Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H. Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering. Chem. Commun. 2005;34:4312–4314.
  • Lee F, Chung JE, Kurisawa M. An injectable enzymatically crosslinked hyaluronic acid–tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter. 2008;4:880–887.10.1039/b719557e
  • Kim KS, Park SJ, Yang JA, Jeon JH, Bhang SH, Kim BS, Hahn SK. Injectable hyaluronic acid-tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomater. 2011;7:666–674.10.1016/j.actbio.2010.09.030
  • Kurisawa M, Lee F, Wang LS, Chung JE. Injectable enzymatically crosslinked hydrogel system with independent tuning of mechanical strength and gelation rate for drug delivery and tissue engineering. J. Mater. Chem. 2010;20:5371–5375.10.1039/b926456f
  • Lee F, Chung JE, Kurisawa M. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. J. Controlled Release. 2009;134:186–193.10.1016/j.jconrel.2008.11.028
  • Xu K, Lee F, Gao SJ, Chung JE, Yano H, Kurisawa M. Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-α2a for liver cancer therapy. J. Controlled Release. 2013;166:203–210.10.1016/j.jconrel.2013.01.008
  • Pek YS, Kurisawa M, Gao S, Chung JE, Ying JY. The development of a nanocrystalline apatite reinforced crosslinked hyaluronic acid-tyramine composite as an injectable bone cement. Biomaterials. 2009;30:822–828.
  • Jin R, Hiemstra C, Zhong Z, Feijen J. Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Biomaterials. 2007;28:2791–2800.10.1016/j.biomaterials.2007.02.032
  • Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, Zhong Z, Feijen J. Fast in-situ formation of dextran-tyramine hydrogels for in vitro chondrocyte culturing. J. Controlled Release. 2008;132:e24–e26.10.1016/j.jconrel.2008.09.014
  • Jin R, Moreira Teixeira LS, Dijkstra PJ, Zhong Z, van Blitterswijk CA, Karperien M, Feijen J. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng. Part A. 2010;16:2429–2440.10.1089/ten.tea.2009.0764
  • Jin R, Moreira Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials. 2010;31:3103–3113.10.1016/j.biomaterials.2010.01.013
  • Moreira Teixeira LS, Bijl S, Pully VV, Otto C, Jin R, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair. Biomaterials. 2012;33:3164–3174.10.1016/j.biomaterials.2012.01.001
  • Tran NQ, Joung YK, Lih E, Park KD. In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules. 2011;12:2872–2880.10.1021/bm200326g
  • Sakai S, Hirose K, Moriyama K, Kawakami K. Control of cellular adhesiveness in an alginate-based hydrogel by varying peroxidase and H2O2 concentrations during gelation. Acta Biomater. 2010;6:1446–1452.10.1016/j.actbio.2009.10.004
  • Ganesh N, Hanna C, Nair SV, Nair LS. Enzymatically cross-linked alginic-hyaluronic acid composite hydrogels as cell delivery vehicles. Int. J. Biol. Macromol. 2013;55:289–294.10.1016/j.ijbiomac.2012.12.045
  • Sakai S, Hirose K, Taguchi K, Ogushi Y, Kawakami K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials. 2009;30:3371–3377.10.1016/j.biomaterials.2009.03.030
  • Wang LS, Du C, Chung JE, Kurisawa M. Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells. Acta Biomater. 2012;8:1826–1837.10.1016/j.actbio.2012.02.002
  • Wang LS, Boulaire J, Chan PP, Chung JE, Kurisawa M. The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials. 2010;31:8608–8616.10.1016/j.biomaterials.2010.07.075
  • Park KM, Lee Y, Son JY, Bae JW, Park KD. In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for enhancement of endothelial cell activity and neo-vascularization. Bioconjugate Chem. 2012;23:2042–2050.10.1021/bc300110b
  • Park KM, Lee Y, Son JY, Oh DH, Lee JS, Park KD. Synthesis and characterizations of in situ cross-linkable gelatin and 4-arm-PPO-PEO hybrid hydrogels via enzymatic reaction for tissue regenerative medicine. Biomacromolecules. 2012;13:604–611.10.1021/bm201712z
  • Jin R, Moreira Teixeira LS, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J. Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J. Controlled Release. 2011;152:186–195.10.1016/j.jconrel.2011.01.031
  • Ogushi Y, Sakai S, Kawakami K. Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications. J. Biosci. Bioeng. 2007;104:30–33.10.1263/jbb.104.30
  • Ogushi Y, Sakai S, Kawakami K. Phenolic hydroxy groups incorporated for the peroxidase-catalyzed gelation of a carboxymethylcellulose support: cellular adhesion and proliferation. Macromol. Biosci. 2009;9:262–267.10.1002/mabi.v9:3
  • Sakai S, Ogushi Y, Kawakami K. Enzymatically crosslinked carboxymethylcellulose-tyramine conjugate hydrogel: cellular adhesiveness and feasibility for cell sheet technology. Acta Biomater. 2009;5:554–559.10.1016/j.actbio.2008.10.010
  • Park KM, Ko KS, Joung YK, Shin H, Park KD. In situ cross-linkable gelatin–poly(ethylene glycol)–tyramine hydrogel via enzyme-mediated reaction for tissue regenerative medicine. J. Mater. Chem. 2011;21:13180–13187.10.1039/c1jm12527c
  • Menzies DJ, Cameron A, Munro T, Wolvetang E, Grøndahl L, Cooper-White JJ. Tailorable cell culture platforms from enzymatically cross-linked multifunctional poly(ethylene glycol)-based hydrogels. Biomacromolecules. 2013;14:413–423.10.1021/bm301652q
  • Park KM, Jun I, Joung YK, Shin H, Park KD. In situ hydrogelation and RGD conjugation of tyramine-conjugated 4-arm PPO–PEO block copolymer for injectable bio-mimetic scaffolds. Soft Matter. 2011;7:986–992.10.1039/c0sm00612b
  • Shih IL, Van YT. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 2001;79:207–225.10.1016/S0960-8524(01)00074-8
  • Kunioka M, Furusawa K. Poly(γ-glutamic acid) hydrogel prepared from microbial poly(γ-glutamic acid) and alkanediamine with water-soluble carbodiimide. J. Appl. Polym. Sci. 1997;65:1889–1896.10.1002/(ISSN)1097-4628
  • Murakami S, Aoki N. Bio-based hydrogels prepared by cross-linking of microbial poly(γ-glutamic acid) with various saccharides. Biomacromolecules. 2006;7:2122–2127.10.1021/bm0600264
  • Lin WC, Yu DG, Yang MC. Blood compatibility of novel poly(γ-glutamic acid)/polyvinyl alcohol hydrogels. Colloids Surf., B. 2006;47:43–49.10.1016/j.colsurfb.2005.11.013
  • Antunes JC, Pereira CL, Molinos M, Ferreira-da-Silva F, Dessı̀ M, Gloria A, Ambrosio L, Gonçalves RM, Barbosa MA. Layer-by-layer self-assembly of chitosan and poly(γ-glutamic acid) into polyelectrolyte complexes. Biomacromolecules. 2011;12:4183–4195.10.1021/bm2008235
  • Hsieh CY, Tsai SP, Wang DM, Chang YN, Hsieh HJ. Preparation of γ-PGA/chitosan composite tissue engineering matrices. Biomaterials. 2005;26:5617–5623.10.1016/j.biomaterials.2005.02.012
  • Kang HS, Park SH, Lee YG, Son TI. Polyelectrolyte complex hydrogel composed of chitosan and poly(γ-glutamic acid) for biological application: Preparation, physical properties, and cytocompatibility. J. Appl. Polym. Sci. 2007;103:386–394.10.1002/(ISSN)1097-4628
  • Lee YH, Chang JJ, Lai WF, Yang MC, Chien CT. Layered hydrogel of poly(γ-glutamic acid), sodium alginate, and chitosan: fluorescence observation of structure and cytocompatibility. Colloids Surf., B. 2011;86:409–413.10.1016/j.colsurfb.2011.04.002
  • Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv. Mater. 2009;21:3307–3329.10.1002/adma.v21:32/33
  • Canal T, Peppas NA. Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J. Biomed. Mater. Res. 1989;23:1183–1193.10.1002/(ISSN)1097-4636
  • Brant DA, Flory PJ. The configuration of random polypeptide chains. I. Experimental results. J. Am. Chem. Soc. 1965;87:2788–2791.10.1021/ja01091a002
  • Hennink WE, Talsma H, Borchert JCH, De Smedt SC, Demeester J. Controlled release of proteins from dextran hydrogels. J. Controlled Release. 1996;39:47–55.10.1016/0168-3659(95)00132-8
  • Grassi M, Grassi G. Mathematical modelling and controlled drug delivery: matrix systems. Curr. Drug Delivery. 2005;2:97–116.10.2174/1567201052772906
  • Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Controlled Release. 1987;5:37–42.10.1016/0168-3659(87)90035-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.