1,132
Views
18
CrossRef citations to date
0
Altmetric
Review Article

Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering

, , &
Pages 536-561 | Received 19 Sep 2020, Accepted 09 Nov 2020, Published online: 06 Dec 2020
 

Abstract

Tissue damage related to bone and cartilage is a common clinical disease. Cartilage tissue has no blood vessels and nerves. The limited cell migration ability results in low endogenous healing ability. Due to the complexity of the osteochondral interface, the clinical treatment of osteochondral injury is limited. Tissue engineering provides new ideas for solving this problem. The ideal tissue engineering scaffold must have appropriate porosity, biodegradability and specific functions related to tissue regeneration, especially bioactive polymer nanofiber composite materials with controllable biodegradation rate and appropriate mechanical properties have been getting more and more research. The nanofibers produced by electrospinning have high specific surface area and suitable mechanical properties, which can effectively simulate the natural extracellular matrix (ECM) of bone or cartilage tissue. The composition of materials can affect mechanical properties, plasticity, biocompatibility and degradability of the scaffold, thereby further affect the repair efficiency. This article reviews the characteristics of polymer materials and the application of its electrospun nanofibers in bone, cartilage and osteochondral tissue engineering.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work has been supported by the Natural Science Foundation of China (11802197) and Key R&D Program of Shanxi Province (International Cooperation, 201903D421064).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.