1,132
Views
18
CrossRef citations to date
0
Altmetric
Review Article

Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering

, , &
Pages 536-561 | Received 19 Sep 2020, Accepted 09 Nov 2020, Published online: 06 Dec 2020

References

  • Qu H. Additive manufacturing for bone tissue engineering scaffolds. Mater Today Commun. 2020;24:101024.
  • More N, Kapusetti G. Piezoelectric material - a promising approach for bone and cartilage regeneration. Med Hypotheses. 2017;108:10–16.
  • Wang Y, Bian Y, Zhou L, et al. Biological evaluation of bone substitute. Clin Chim Acta. 2020;510:544–555.
  • Zeng J-H, Liu S-W, Xiong L, et al. Scaffolds for the repair of bone defects in clinical studies: a systematic review. J Orthop Surg Res. 2018;13(1):33.
  • Bae DK, Yoon KH, Song SJ. Cartilage healing after microfracture in osteoarthritic knees. Arthroscopy. 2006;22(4):367–374.
  • Kreuz PC, Steinwachs MR, Erggelet C, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthr Cartil. 2006;14(11):1119–1125.
  • Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11(1):21–34.
  • Hubbard MJ. Articular debridement versus washout for degeneration of the medial femoral condyle. J Bone Joint Surg Br. 1996;78(2):217–219.
  • Jomphe C, Gabriac M, Hale TM, et al. Chondroitin sulfate inhibits the nuclear translocation of nuclear factor‐KB in interleukin‐1β‐stimulated chondrocytes. Basic Clin Physiol Pharmacol. 2007;102(1):59–65.
  • Yang F, Zhang Y, Liu B, et al. Basic fibroblast growth factor and agarose gel promote the ability of immune privilege of allogeneic cartilage transplantation in rats. J Orthop Translat. 2020;22:73–80.
  • Zhou X, Esworthy T, Lee S-J, et al. 3D Printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration. Nanomedicine. 2019;19:58–70.
  • Zhu T, Cui Y, Zhang M, et al. Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioact Mater. 2020;5(3):584–601.
  • Zhang Y, Liu X, Zeng L, et al. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater. 2019;29(36):1970246.
  • Qasim M, Chae DS, Lee NY. Bioengineering strategies for bone and cartilage tissue regeneration using growth factors and stem cells. J Biomed Mater Res A. 2020;108(3):394–411.
  • Roseti L, Parisi V, Petretta M, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246–1262.
  • Ang SL, Shaharuddin B, Chuah J-A, et al. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silk fibroin film is a promising scaffold for bone tissue engineering. Int J Biol Macromol. 2020;145:173–188.
  • Fernandes MM, Correia DM, Ribeiro C, et al. Bioinspired three-dimensional magnetoactive scaffolds for bone tissue engineering. ACS Appl Mater Interfaces. 2019;11(48):45265–45275.
  • Mallick SP, Singh BN, Rastogi A, et al. Design and evaluation of chitosan/poly(L-lactide)/pectin based composite scaffolds for cartilage tissue regeneration. Int J Biol Macromol. 2018;112:909–920.
  • Chen T, Zou Q, Du C, et al. Biodegradable 3D printed HA/CMCS/PDA scaffold for repairing lacunar bone defect. Mater Sci Eng C Mater Biol Appl. 2020;116:111148.
  • Shi Y, Pan T, Zhu W, et al. Artificial bone scaffolds of coral imitation prepared by selective laser sintering. J Mech Behav Biomed Mater. 2020;104:103664.
  • Martí-Muñoz J, Castaño O. 11 - Bioactive fibers for bone regeneration. In: Guarino V, Ambrosio L, editors. Electrofluidodynamic technologies (EFDTs) for biomaterials and medical devices. Cambridge(UK): Woodhead Publishing; 2018. pp. 205–220.
  • Yingge Z, Joanna C, Mimi Z. Recent progress of fabrication of cell scaffold by electrospinning technique for articular cartilage tissue engineering. Int J Biomater. 2018;2018:1953636.
  • Kumar A, Chahal S, Hussain FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J Biomater Sci Polym Ed. 2019;30(14):1–51.
  • Juncos Bombin AD, Dunne NJ, McCarthy HO. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater Sci Eng C Mater Biol Appl. 2020;114:110994
  • Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12(5):1197–1211.
  • Cheng J, Jun Y, Qin J, et al. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials. 2017;114:121–143.
  • Chapman BS, Mishra SR, Tracy JB. Direct electrospinning of titania nanofibers with ethanol. Dalton Trans. 2019;48(34):12822–12827.
  • Wang C, Wang J, Zeng L, et al. Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules. 2019;24(5):834.
  • Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Adv Mater. 2000;12(23):1841–1846.
  • Teixeira BN, Aprile P, Mendonça RH, et al. Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res. 2019;107(1):37–49.
  • Martin V, Ribeiro IA, Alves MM, et al. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater Sci Eng C Mater Biol Appl. 2019;101:15–26.
  • Ma Z, Mao Z, Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B Biointerfaces. 2007;60(2):137–157.
  • Mondal S, Nguyen TP, Pham VH, et al. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int. 2020;46(3):3443–3455.
  • Zhang B, Zhang W, Zhang Z, et al. Self-healing four-dimensional printing with an ultraviolet curable double-network shape memory polymer system. ACS Appl Mater Interfaces. 2019;11(10):10328–10336.
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–1256.
  • Murab S, Gruber SMS, Lin CYJ, et al. Elucidation of bio-inspired hydroxyapatie crystallization on oxygen-plasma modified 3D printed poly-caprolactone scaffolds. Mater Sci Eng C Mater Biol Appl. 2020;109:110529.
  • Cheng L, Ghobeira R, Cools P, et al. Comparative study of different nitrogen-containing plasma modifications applied on 3D porous PCL scaffolds and 2D PCL films. Appl Surf Sci. 2020;516:146067.
  • Budak K, Sogut O, Sezer UA. A review on synthesis and biomedical applications of polyglycolic acid. J Polym Res. 2020;27(8):1–19.
  • Zhang J, Xie B, Xi Z, et al. A comparable study of polyglycolic acid's degradation on macrophages' activation. Mater Sci Eng C Mater Biol Appl. 2020;109:110574.
  • Guo W, Zhang Y, Feng P, et al. Montmorillonite with unique interlayer space imparted polymer scaffolds with sustained release of Ag+. Ceram Int. 2019;45(9):11517–11526.
  • Hdidar M, Chouikhi S, Fattoum A, et al. Effect of hydrolysis degree and mass molecular weight on the structure and properties of PVA films. Ionics. 2017;23(11):3125–3135.
  • Zhou X, Hou C, Chang T-L, et al. Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method. Colloids Surf, B. 2020;187:110645.
  • Pattanashetti NA, Hiremath C, Naik SR, et al. Development of nanofibrous scaffolds by varying the TiO2 content in crosslinked PVA for bone tissue engineering. New J Chem. 2020;44(5):2111–2121.
  • Yh A, Zh A, Jw A, et al. Assessment of biological properties of recombinant collagen-hyaluronic acid composite scaffolds. Int J Biol Macromol. 2020;149:1275–1284.
  • Gu L, Shan T, Ma YX, et al. Novel biomedical applications of crosslinked collagen. Trends Biotechnol. 2019;37(5):464–491.
  • Ferreira AM, Gentile P, Chiono V, et al. Collagen for bone tissue regeneration. Acta Biomater. 2012;8(9):3191–3200.
  • Zhai P, Peng X, Li B, et al. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol. 2020;151:1224–1239.
  • Jin YJ, Koh RH, Kim SH, et al. Injectable anti-inflammatory hyaluronic acid hydrogel for osteoarthritic cartilage repair. Mater Sci Eng C Mater Biol Appl. 2020;115:111096.
  • Yue K, Santiago TD, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254–271.
  • Singh R, Khan S, Basu SM, et al. Fabrication, characterization, and biological evaluation of airbrushed gelatin nanofibers. ACS Appl Bio Mater. 2019;2(12):5340–5348.
  • Chhabra R, Peshattiwar V, Pant T, et al. In vivo studies of 3D starch-gelatin scaffolds for full thickness wound healing. ACS Appl Bio Mater. 2020;3(5):2920–2929.
  • Echave MC, Pimenta-Lopes C, Pedraz JL, et al. Enzymatic crosslinked gelatin 3D scaffolds for bone tissue engineering. Int J Pharm. 2019;562:151–161.
  • Yang G, Xiao Z, Long H, et al. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci Rep. 2018;8(1):1616.
  • Liu Y, Ng SC, Yu J, et al. Modification and crosslinking of gelatin-based biomaterials as tissue adhesives. Colloids Surf B Biointerfaces. 2019;174:316–323.
  • Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci. 2019;263:131–194.
  • Pinto RV, Gomes PS, Fernandes MH, et al. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications. Mater Sci Eng C Mater Biol Appl. 2020;109:110557.
  • Li H, Hu C, Yu H, et al. Chitosan composite scaffolds for articular cartilage defect repair: a review. RSC Adv. 2018;8(7):3736–3749.
  • Neves SC, Teixeira LSM, Moroni L, et al. Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomaterials. 2011;32(4):1068–1079.
  • Chen S, Zhao X, Du C. Macroporous poly (l-lactic acid)/chitosan nanofibrous scaffolds through cloud point thermally induced phase separation for enhanced bone regeneration. Eur Polym J. 2018;109:303–316.
  • Wang H, Chu C, Cai R, et al. Synthesis and bioactivity of gelatin/multiwalled carbon nanotubes/hydroxyapatite nanofibrous scaffolds towards bone tissue engineering. RSC Adv. 2015;5(66):53550–53558.
  • Liu W, Bi W, Sun Y, et al. Biomimetic organic-inorganic hybrid hydrogel electrospinning periosteum for accelerating bone regeneration. Mater Sci Eng C Mater Biol Appl. 2020;110:110670.
  • Erickson AE, Edmondson D, Chang FC, et al. High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning. Carbohydr Polym. 2015;134:467–474.
  • Wang N, Sun C, Zhao Y, et al. Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process. J Mater Chem. 2008;18(33):3909–3911.
  • Li Z, Xu Y, Fan L, et al. Fabrication of polyvinylidene fluoride tree-like nanofiber via one-step electrospinning. Mater Des. 2016;92:95–101.
  • Wang X, Gao Y, Xu Y, et al. A prerequisite of the poly(ε-Caprolactone) self-induced nanohybrid Shish-Kebab structure formation: an ordered crystal lamellae orientation morphology of fibers. Macromol Chem Phys. 2017;218(24):1700414.
  • Li W, Shi L, Zhou K, et al. Facile fabrication of porous polymer fibers via cryogenic electrospinning system. J Mater Process Technol. 2019;266:551–557.
  • Hochleitner G, Jüngst T, Brown TD, et al. Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication. 2015;7(3):035002.
  • Ostermann R, Li D, Yin Y, et al. V2O5 nanorods on TiO2 nanofibers: a new class of hierarchical nanostructures enabled by electrospinning and calcination. Nano Lett. 2006;6(6):1297–1302.
  • Balzamo G, Zhang X, Bosbach WA, et al. In-situ formation of polyvinylidene fluoride microspheres within polycaprolactone electrospun mats. Polymer. 2020;186:122087.
  • Liu Y, Luo D, Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small. 2016;12(34):4611–4632.
  • Zhu L, Luo D, Liu Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci. 2020;12(1):6.
  • Wegst UG, Bai H, Saiz E, et al. Bioinspired structural materials. Nat Mater. 2015;14(1):23–36.
  • Zhao D, Zhu T, Li J, et al. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioact Mater. 2021;6(2):346–360.
  • Frassica MT, Grunlan MA. Perspectives on synthetic materials to guide tissue regeneration for osteochondral defect repair. ACS Biomater Sci Eng. 2020;6(8):4324–4336.
  • Lian H, Zhang L, Meng Z. Biomimetic hydroxyapatite/gelatin composites for bone tissue regeneration: Fabrication, characterization, and osteogenic differentiation in vitro. Mater Des. 2018;156:381–388.
  • Ding J, Zhang J, Li J, et al. Electrospun polymer biomaterials. Prog Polym Sci. 2019;90:1–34.
  • Malikmammadov E, Tanir TE, Kiziltay A, et al. PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering. J Biomater Sci Polym Ed. 2018;29(7-9):805–824.,
  • Dai J, Yang S, Jin J, et al. Electrospinning of PLA/pearl powder nanofibrous scaffold for bone tissue engineering. RSC Adv. 2016;6(108):106798–106805.
  • Günnur O, Ozan K. Accelerated mineralization on nanofibers via non-thermal atmospheric plasma assisted glutamic acid templated peptide conjugation. Regener Biomater. 2019;6(4):231–240.
  • Sharifi F, Atyabi SM, Norouzian D, et al. Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. Int J Biol Macromol. 2018;115:243–248.
  • Yoshimoto H, Shin YM, Terai H, et al. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24(12):2077–2082.
  • Gutierrez-Sanchez M, Escobar-Barrios VA, Pozos-Guillen A, et al. RGD-functionalization of PLA/starch scaffolds obtained by electrospinning and evaluated in vitro for potential bone regeneration. Mater Sci Eng C Mater Biol Appl. 2019;96:798–806.
  • Linh NTB, Lee BT. Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue engineering application. J Biomater Appl. 2012;27(3):255–266.
  • Govindasamy K, Dahlan NA, Janarthanan P, et al. Electrospun chitosan/polyethylene-oxide (PEO)/halloysites (HAL) membranes for bone regeneration applications. Appl Clay Sci. 2020;190:105601.
  • Sedghi R, Shaabani A, Sayyari N. Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration. Carbohydr Polym. 2020;230:115707.
  • Januariyasa IK, Ana ID, Yusuf Y. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2020;107:110347.
  • Cui L, Zhang J, Zou J, et al. Electroactive composite scaffold with locally expressed osteoinductive factor for synergistic bone repair upon electrical stimulation. Biomaterials. 2020;230:119617.
  • Li X, Yin HM, Luo E, et al. Accelerating bone healing by decorating BMP-2 on porous composite scaffolds. ACS Appl Bio Mater. 2019;2(12):5717–5726.
  • Deng M, Tan J, Hu C, et al. Modification of PLGA scaffold by MSC-derived extracellular matrix combats macrophage inflammation to initiate bone regeneration via TGF-β-induced protein. Adv Healthcare Mater. 2020;9(13):2000353.
  • Sivashanmugam A, Charoenlarp P, Deepthi S, et al. Injectable shear-thinning CaSO4/FGF-18-incorporated chitin-PLGA hydrogel enhances bone regeneration in mice cranial bone defect model. ACS Appl Mater Interfaces. 2017;9(49):42639–42652.
  • Choi Y, Park MH, Lee K. Injectable thermoresponsive hydrogel/nanofiber hybrid scaffolds inducing human adipose-derived stem cell chemotaxis. J Ind Eng Chem. 2020;82:89–97.
  • Dreyer CH, Kjaergaard K, Ding M, et al. Vascular endothelial growth factor for in vivo bone formation: a systematic review. J Orthop Translat. 2020;24:46–57.
  • Subramanian G, Bialorucki C, Yildirim-Ayan E. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2. Mater Sci Eng C Mater Biol Appl. 2015;51:16–27.
  • Ding Y, Li W, Correia A, et al. Electrospun polyhydroxybutyrate/poly(ε-caprolactone)/sol-gel-derived silica hybrid scaffolds with drug releasing function for bone tissue engineering applications. ACS Appl Mater Interfaces. 2018;10(17):14540–14548.
  • Chen J, Li Y, Wang B, et al. TGF-β1 affinity peptides incorporated within a chitosan sponge scaffold can significantly enhance cartilage regeneration. J Mater Chem B. 2018;6(4):675–687.
  • Wang C, Feng N, Chang F, et al. Injectable cholesterol-enhanced stereocomplex polylactide thermogel loading chondrocytes for optimized cartilage regeneration. Adv Healthcare Mater. 2019;8(14):1900312.
  • Silva JC, Udangawa RN, Chen J, et al. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2020;107:110291.
  • Zhao W, Du Z, Fang J, et al. Synthetic/natural blended polymer fibrous meshes composed of polylactide, gelatin and glycosaminoglycan for cartilage repair. J Biomater Sci Polym Ed. 2020;31(11):1437–1456.
  • Giro AF, Semitela N, Pereira AL, et al. Microfabrication of a biomimetic arcade-like electrospun scaffold for cartilage tissue engineering applications. J Mater Sci Mater Med. 2020;31(8):69.
  • Mirzaei S, Karkhaneh A, Soleimani M, et al. Enhanced chondrogenic differentiation of stem cells using an optimized electrospun nanofibrous PLLA/PEG scaffolds loaded with glucosamine. J Biomed Mater Res A. 2017;105(9):2461–2474.
  • Sharifi F, Irani S, Azadegan G, et al. Co-electrospun gelatin-chondroitin sulfate/polycaprolactone nanofibrous scaffolds for cartilage tissue engineering. Bioact Carbohydr Dietary Fibre. 2020;22:100215.
  • Dong J, Jhu RJ, Wang L, et al. A hybrid platform for three-dimensional printing of bone scaffold by combining thermal-extrusion and electrospinning methods. Microsyst Technol. 2020;26(6):1847–1861.
  • Rad ZP, Mokhtari J, Abbasi M. Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering. Int J Biol Macromol. 2019;135:530–543.
  • Humenik M, Lang G, Scheibel T. Silk nanofibril self‐assembly versus electrospinning. Wiley Interdip Rev Nanomed Nanobiotechnol. 2018;10:1509.
  • Park YS, Kim J, Oh JM, et al. Near-field electrospinning for three-dimensional stacked nanoarchitectures with high aspect ratios. Nano Lett. 2020;20(1):441–448.
  • Chen W, Chen S, Morsi Y, et al. Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces. 2016;8(37):24415–24425.
  • Li Y, Liu Y, Xun X, et al. Three-dimensional porous scaffolds with biomimetic microarchitecture and bioactivity for cartilage tissue engineering. ACS Appl Mater Interfaces. 2019;11(40):36359–36370.
  • Chen W, Xu Y, Li Y, et al. 3D printing electrospinning fiber-reinforced decellularized extracellular matrix for cartilage regeneration. Chem Eng J. 2020;382:122986.
  • Tang C, Holt BD, Wright ZM, et al. Injectable amine functionalized graphene and chondroitin sulfate hydrogel with potential for cartilage regeneration. J Mater Chem B. 2019;7(15):2442–2453.
  • Zou Z, Wei M, Fang J, et al. Preparation of chondroitin sulfates with different molecular weights from bovine nasal cartilage and their antioxidant activities. Int J Biol Macromol. 2020;152:1047–1055.
  • Irani S, Honarpardaz A, Choubini N, et al. Chondro‐inductive nanofibrous scaffold based gelatin/polyvinyl alcohol/chondroitin sulfate for cartilage tissue engineering. Polym Adv Technol. 2020;31(6):1395–1402.
  • Feng X, Li J, Zhang X, et al. Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release. 2019;302:19–41.
  • Wang Z, Wang Y, Zhang P, et al. Methylsulfonylmethane-loaded electrospun poly(lactide-co-glycolide) mats for cartilage tissue engineering. RSC Adv. 2015;5(117):96725–96732.
  • Zhang Y, Yu J, Ren K, et al. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules. 2019;20(4):1478–1492.
  • You B, Li Q, Dong H, et al. Bilayered HA/CS/PEGDA hydrogel with good biocompatibility and self-healing property for potential application in osteochondral defect repair. J Mater Sci Technol. 2018;34(6):1016–1025.
  • Khader A, Arinzeh TL. Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnol Bioeng. 2020;117(1):194–209.
  • M JC, Reardon PJ, Konwarh R, et al. Mimicking hierarchical complexity of the osteochondral interface using electrospun silk-bioactive glass composites. ACS Appl Mater Interfaces. 2017;9(9):8000–8013.
  • Tamburaci S, Cecen B, Ustun O, et al. Production and characterization of novel bilayer nanocomposite scaffold composed of chitosan/Si-nHap and Zein/POSS structures for osteochondral tissue regeneration. ACS Appl Bio Mater. 2019;2(4):1440–1455.
  • Yunos D, Ahmad Z, Salih V, et al. Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated Bioglass®-derived foams. J Biomater Appl. 2013;27(5):537–551.
  • Liu S, Wu J, Liu X, et al. Osteochondral regeneration using an oriented nanofiber yarn-collagen type I/hyaluronate hybrid/TCP biphasic scaffold. J Biomed Mater Res A. 2015;103(2):581–592.
  • Singh YP, Moses JC, Bhardwaj N, et al. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B. 2018;6(35):5499–5529.
  • Zhu X, Chen T, Feng B, et al. Biomimetic bacterial cellulose-enhanced double-network hydrogel with excellent mechanical properties applied for the osteochondral defect repair. ACS Biomater Sci Eng. 2018;4(10):3534–3544.
  • Xu S, Deng L, Zhang J, et al. Composites of electrospun-fibers and hydrogels: a potential solution to current challenges in biological and biomedical field. J Biomed Mater Res B Appl Biomater. 2016;104(3):640–656.
  • Li W, Kang J, Yuan Y, et al. Preparation and characterization of PVA-PEEK/PVA-β-TCP bilayered hydrogels for articular cartilage tissue repair. Composites Sci Technol. 2016;128:58–64.
  • Liverani L, Roether JA, Nooeaid P, et al. Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering. Mater Sci Eng A. 2012;557:54–58.
  • Chen T, Bai J, Tian J, et al. A single integrated osteochondral in situ composite scaffold with a multi-layered functional structure. Colloids Surf B Biointerfaces. 2018;167:354–363.
  • Pham QP, Sharma U, Mikos AG. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006;7(10):2796–2805.
  • Ahmed M, Ramos TAdS, Damanik F, et al. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis. Sci Rep. 2015;5(1):14804.
  • Kim HS, Mandakhbayar N, Kim H-W, et al. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. Biomaterials. 2020:120214.
  • Zhang S, Chen L, Jiang Y, et al. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater. 2013;9(7):7236–7247.
  • Liu X, Liu S, Liu S, et al. Evaluation of oriented electrospun fibers for periosteal flap regeneration in biomimetic triphasic osteochondral implant. J Biomed Mater Res B Appl Biomater. 2014;102(7):1407–1414.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.