1,518
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Polymeric biomaterials for wound healing applications: a comprehensive review

, , , , , , , , & show all
Pages 1998-2050 | Received 13 Sep 2021, Accepted 20 May 2022, Published online: 19 Jun 2022
 

Abstract

Chronic wounds have been a global health threat over the past few decades, requiring urgent medical and research attention. The factors delaying the wound-healing process include obesity, stress, microbial infection, aging, edema, inadequate nutrition, poor oxygenation, diabetes, and implant complications. Biomaterials are being developed and fabricated to accelerate the healing of chronic wounds, including hydrogels, nanofibrous, composite, foam, spongy, bilayered, and trilayered scaffolds. Some recent advances in biomaterials development for healing both chronic and acute wounds are extensively compiled here. In addition, various properties of biomaterials for wound-healing applications and how they affect their performance are reviewed. Based on the recent literature, trilayered constructs appear to be a convincing candidate for the healing of chronic wounds and complete skin regeneration because they mimic the full thickness of skin: epidermis, dermis, and the hypodermis. This type of scaffold provides a dense superficial layer, a bioactive middle layer, and a porous lower layer to aid the wound-healing process. The hydrophilicity of scaffolds aids cell attachment, cell proliferation, and protein adhesion. Other scaffold characteristics such as porosity, biodegradability, mechanical properties, and gas permeability help with cell accommodation, proliferation, migration, differentiation, and the release of bioactive factors.

Acknowledgment

The authors would like to thank Wichita State University for funding this research via the MURPA (Multidisciplinary Research Project Award) grant.

Disclosure statement

No potential conflict of interest was reported by the authors.

Data availability

All data generated or analyzed during this study are included in this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.