1,520
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Polymeric biomaterials for wound healing applications: a comprehensive review

, , , , , , , , & show all
Pages 1998-2050 | Received 13 Sep 2021, Accepted 20 May 2022, Published online: 19 Jun 2022

References

  • Mayet N, Choonara YE, Kumar P, et al. A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci. 2014;103(8):2211–2230.
  • Chong EJ, Phan TT, Lim IJ, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3(3):321–330.
  • Park H-H, Ko S-C, Oh G-W, et al. Fabrication and characterization of phlorotannins/poly (vinyl alcohol) hydrogel for wound healing application. J Biomater Sci Polym Ed. 2018;29(7–9):972–983.
  • Yousef H, Alhajj M, Sharma S. Skin (integument). In StatPearls [internet]. Treasure Island, FL: StatPearls Publishing; 2021.
  • Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(5):510–525.
  • Cohen S. The epidermal growth factor family (EDF). Cancer. 1983;51(10):1787–1791.
  • Greaves NS, Ashcroft KJ, Baguneid M, et al. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci. 2013;72(3):206–217.
  • Ying G, Manríquez J, Wu D, et al. An open-source handheld extruder loaded with pore-forming bioink for in situ wound dressing. Mater Today Bio. 2020;8:100074.
  • Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015;4(9):560–582.
  • Darwin E, Tomic-canic M. Healing chronic wounds: current challenges and potential solutions. Curr Dermatol Rep. 2018;7(4):296–302.
  • Sen CK. Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care (New Rochelle). 2021;10(5):281–292.
  • Nussbaum SR, Carter MJ, Fife CE, et al. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health. 2018;21(1):27–32.
  • Sen CK, Gordillo GM, Roy S, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763–771.
  • Wang W, Lu KJ, Yu CH, et al. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnol. 2019;17(1):1–15.
  • Li X, Lv HF, Zhao R, et al. Recent developments in bio-scaffold materials as delivery strategies for therapeutics for endometrium regeneration. Mater Today Bio. 2021;11:100101.
  • Grumezescu AM, Holban AM, Andronescu E, et al. Anionic polymers and 10 nm Fe3O4@UA wound dressings support human foetal stem cells normal development and exhibit great antimicrobial properties. Int J Pharm. 2014;463(2):146–154.
  • V. T P. Copazan herbal gel and wound healing in vitro: Assessment of the functional biomaterial for veterinary application. Adv Biotechnol Microbiol. 2018;8(4):555744.
  • Contessi Negrini N, Angelova Volponi A, Higgins CA, et al. Scaffold-based developmental tissue engineering strategies for ectodermal organ regeneration. Mater Today Bio. 2021;10:100107.
  • Mir M, Ali MN, Barakullah A, et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater. 2018;7(1):1–21.
  • Dhivya S, Padma VV, Santhini E. Wound dressings—a review. BioMed. 2015;5(4):24–28.
  • Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6(4):e03719.
  • Saghazadeh S, Rinoldi C, Schot M, et al. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev. 2018;127:138–166.
  • Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528–1542.
  • Schreml S, Szeimies RM, Prantl L, et al. Wound healing in the 21st century. J Am Acad Dermatol. 2010;63(5):866–881.
  • Iqbal A, Jan A, Wajid MA, et al. Management of chronic non-healing wounds by hirudotherapy. World J Plast Surg. 2017;6(1):9–17.
  • Young A, McNaught C-E. The physiology of wound healing. Surgery. 2011;29(10):475–479.
  • Stone RC, Stojadinovic O, Rosa AM, et al. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers. Sci Transl Med. 2017;9(371):1–12.
  • Nunan R, Harding KG, Martin P. Clinical challenges of chronic wounds: Searching for an optimal animal model to recapitulate their complexity. Dis Model Mech. 2014;7(11):1205–1213.
  • Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6.
  • Shah SA, Sohail M, Khan S, et al. Biopolymer-based biomaterials for accelerated diabetic wound healing: a critical review. Int J Biol Macromol. 2019;139:975–993.
  • Lima TdPdL, Passos MF. Skin wounds, the healing process, and hydrogel-based wound dressings: a short review. J Biomater Sci Polym Ed. 2021;2021:1–17.
  • Napavichayanun S, Aramwit P. Effect of animal products and extracts on wound healing promotion in topical applications: a review. J Biomater Sci Polym Ed. 2017;28(8):703–729.
  • Sharifi S, Hajipour MJ, Gould L, et al. Nanomedicine in healing chronic wounds: Opportunities and challenges. Mol Pharm. 2021;18(2):550–575.
  • Xu Z, Han S, Gu Z, et al. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv Healthcare Mater. 2020;9(5):1901502.
  • Bielefeld KA, Amini-Nik S, Alman BA. Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci. 2013;70(12):2059–2081.
  • Harper D, Young A, McNaught CE. The physiology of wound healing. Surgery. 2014;32(9):445–450.
  • Huang X, He D, Pan Z, et al. Reactive-oxygen-species-scavenging nanomedicine for resolving inflammation. Mater Today Bio. 2021;11:100124.
  • McDaniel JC, Roy S, Wilgus TA. Neutrophil activity in chronic venous leg ulcers—a target for therapy? Wound Repair Regen. 2013;21(3):339–351.
  • Morton LM, Phillips TJ. Wound healing and treating wounds: differential diagnosis and evaluation of chronic wounds. J Am Acad Dermatol. 2016;74(4):589–605.
  • Delavary BM, van der Veer WM, van Egmond M, et al. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753–762.
  • Yussof SJM, Omar E, Pai DR, et al. Cellular events and biomarkers of wound healing. Indian J Plast Surg. 2012;45(2):220–228.
  • Capella-Monsonís H, Tilbury MA, Wall JG, et al. Porcine mesothelium matrix as a biomaterial for wound healing applications. Mater Today Bio. 2020;7:100057.
  • Kiwanuka E, Junker J, Eriksson E. Harnessing growth factors to influence wound healing. Clin Plast Surg. 2012;39(3):239–248.
  • Douglass J. Wound bed preparation: a systematic approach to chronic wounds. Br J Community Nurs. 2003;8(Sup2):S26–S34.
  • Rakhorst G, Ploeg R. Biomaterials in modern medicine: the Gronigen perspective. Singapore: World Scientific; 2008.
  • Vuerstaek JDD, Vainas T, Wuite J, et al. State-of-the-art treatment of chronic leg ulcers: a randomized controlled trial comparing vacuum-assisted closure (V.A.C.) with modern wound dressings. J Vasc Surg. 2006;44(5):1029–1037.
  • Xue J, Wang X, Wang E, et al. Bioinspired multifunctional biomaterials with hierarchical microstructure for wound dressing. Acta Biomater. 2019;100:270–279.
  • Das S, Baker AB. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol. 2016;4:82.
  • Cutting KF. Wound exudate: composition and functions. Br J Community Nurs. 2003;8(Sup3):S4–S9.
  • Chandrasekaran AR, Venugopal J, Sundarrajan S, et al. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomed Mater. 2011;6(1):015001.
  • Tamayol A, Akbari M, Annabi N, et al. Fiber-based tissue engineering: Progress, challenges, and opportunities. Biotechnol Adv. 2013;31(5):669–687.
  • Su S, Bedir T, Kalkandelen C, et al. Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications. Eur Polym J. 2021;142:110158.
  • Li W-J, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–621.
  • Wang M, Roy AK, Webster TJ. Development of chitosan/poly(vinyl alcohol) electrospun nanofibers for infection related wound healing. Front Physiol. 2016;7:683.
  • Ingavle GC, Leach JK. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. Tissue Eng Part B Rev. 2014;20(4):277–293.
  • Fang Y, Zhu X, Wang N, et al. Biodegradable core-shell electrospun nanofibers based on PLA and γ-PGA for wound healing. Eur Polym J. 2019;116:30–37.
  • Najafabadi AH, Tamayol A, Annabi N, et al. Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics. Adv Mater. 2014;26(33):5823–5830.
  • Lu T, Li Y, Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine. 2013;8:337–350.
  • Xie Z, Paras CB, Weng H, et al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013;9(12):9351–9359.
  • Sun X, Lang Q, Zhang H, et al. Electrospun photocrosslinkable hydrogel fibrous scaffolds for rapid in vivo vascularized skin flap regeneration. Adv Funct Mater. 2017;27(2):1604617.
  • Choi JS, Leong KW, Yoo HS. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials. 2008;29(5):587–596.
  • Thakur RA, Florek CA, Kohn J, et al. Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm. 2008;364(1):87–93.
  • Sadeghi-avalshahr AR, Khorsand-Ghayeni M, Nokhasteh S, et al. Synthesis and characterization of PLGA/collagen composite scaffolds as skin substitute produced by electrospinning through two different approaches. J Mater Sci Mater Med. 2017;28(1):1–10.
  • Tchemtchoua VT, Atanasova G, Aqil A, et al. Development of a Chitosan nanofibrillar scaffold for skin repair and regeneration. Biomacromolecules. 2011;12(9):3194–3204.
  • Ahmed MK, Mansour SF, Al-Wafi R, et al. Composition and design of nanofibrous scaffolds of Mg/Se-hydroxyapatite/graphene oxide @ ε-polycaprolactone for wound healing applications. J. Mater Res Technol. 2020;9(4):7472–7485.
  • Lee C-H, Hung K-C, Hsieh M-J, et al. Core-shell insulin-loaded nanofibrous scaffolds for repairing diabetic wounds. Nanomed Nanotechnol Biol Med. 2020;24:102123.
  • Yu H, Chen X, Cai J, et al. Novel porous three-dimensional nanofibrous scaffolds for accelerating wound healing. Chem Eng J. 2019;369:253–262.
  • Ramanathan G, Seleenmary Sobhanadhas LS, Sekar Jeyakumar GF, et al. Fabrication of biohybrid cellulose acetate-collagen bilayer matrices as nanofibrous spongy dressing material for wound-healing application. Biomacromolecules. 2020;21(6):2512–2524.
  • Shaik MM, Dapkekar A, Rajwade JM, et al. Antioxidant-antibacterial containing bi-layer scaffolds as potential candidates for management of oxidative stress and infections in wound healing. J Mater Sci Mater Med. 2019;30(1):13.
  • Haldar S, Sharma A, Gupta S, et al. Bioengineered smart trilayer skin tissue substitute for efficient deep wound healing. Mater Sci Eng C. 2019;105:110140.
  • Huang R, He Z, Bian Y, et al. A biomimetic basement membrane substitute based on tri-layered nanofibrous scaffold for skin reconstruction. J Biomed Nanotechnol. 2019;15(12):2332–2350.
  • Weng W, Chi J, Yu Y, et al. Multifunctional composite inverse opal film with multiactives for wound healing. ACS Appl Mater Interfaces. 2021;13(3):4567–4573.
  • Bao F, Pei G, Wu Z, et al. Bioactive self-pumping composite wound dressings with micropore array modified Janus membrane for enhanced diabetic wound healing. Adv Funct Mater. 2020;30(49):2005422.
  • Chen J, Yang L, Chen J, et al. Composite of silver nanoparticles and photosensitizer leads to mutual enhancement of antimicrobial efficacy and promotes wound healing. Chem Eng J. 2019;374:1373–1381.
  • Ye H, Cheng J, Yu K. In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int J Biol Macromol. 2019;121:633–642.
  • Zeng Y, Zhu L, Han Q, et al. Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing. Acta Biomater. 2015;25:291–303.
  • Kalantari K, Mostafavi E, Saleh B, et al. Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. Eur Polym J. 2020;134:109853.
  • Wang A, Liu Z, Hu M, et al. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. Nano Energy. 2018;43:63–71.
  • Sun L, Gao W, Fu X, et al. Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basketweave pattern of collagen fibrils in native skin. Biomater Sci. 2018;6(2):340–349.
  • Waghmare VS, Wadke PR, Dyawanapelly S, et al. Starch based nanofibrous scaffolds for wound healing applications. Bioact Mater. 2018;3(3):255–266.
  • Pezeshki-Modaress M, Mirzadeh H, Zandi M, et al. Gelatin/chondroitin sulfate nanofibrous scaffolds for stimulation of wound healing: in-vitro and in-vivo study. J Biomed Mater Res A. 2017;105(7):2020–2034.
  • Kokabi M, Sirousazar M, Hassan ZM. PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J. 2007;43(3):773–781.
  • on Rujitanaroj P, Pimpha N, Supaphol P. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer (Guildf). 2008;49(21):4723–4732.
  • Piantanida E, Boškoski I, Quero G, et al. Nanocomposite hyaluronic acid-based hydrogel for the treatment of esophageal fistulas. Mater Today Bio. 2021;10:100109.
  • Assmann A, Vegh A, Ghasemi-Rad M, et al. A highly adhesive and naturally derived sealant. Biomaterials. 2017;140:115–127.
  • Annabi N, Zhang Y-N, Assmann A, et al. Engineering a highly elastic human protein-based sealant for surgical applications. Sci Transl Med. 2017;9(410):eaai7466.
  • Thönes S, Rother S, Wippold T, et al. Hyaluronan/collagen hydrogels containing sulfated hyaluronan improve wound healing by sustained release of heparin-binding EGF-like growth factor. Acta Biomater. 2019;86:135–147.
  • Johnson K-A, Muzzin N, Toufanian S, et al. Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing. Acta Biomater. 2020;112:101–111.
  • Zhao X, Liu L, An T, et al. A hydrogen sulfide-releasing alginate dressing for effective wound healing. Acta Biomater. 2020;104:85–94.
  • Xu J, Li Y, Chen Y, et al. Preparation and characterization of a novel polysialic acid/gelatin composite hydrogels cross-linked by tannic acid to improve wound healing after cesarean section dressing. J Biomater Sci Polym Ed. 2021;2021:1–17.
  • Norris EG, Dalecki D, Hocking DC. Acoustic modification of collagen hydrogels facilitates cellular remodeling. Mater Today Bio. 2019;3:100018.
  • Sarrigiannidis SO, Rey JM, Dobre O, et al. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater Today Bio. 2021;10:100098.
  • Janmey PA, Winer JP, Weisel JW. Fibrin gels and their clinical and bioengineering applications. J R Soc Interface. 2009;6(30):1–10.
  • Sun G, Zhang X, Shen Y-I, et al. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci USA. 2011;108(52):20976–20981.
  • Nonsuwan P, Matsugami A, Hayashi F, et al. Controlling the degradation of an oxidized dextran-based hydrogel independent of the mechanical properties. Carbohydr Polym. 2019;204:131–141.
  • Ayerst BI, Merry CLR, Day AJ. The good the bad and the ugly of glycosaminoglycans in tissue engineering applications. Pharmaceuticals. 2017;10(4):54.
  • Kirker KR, Luo Y, Nielson JH, et al. Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials. 2002;23(17):3661–3671.
  • Zhao Y, Nakajima T, Yang JJ, et al. Proteoglycans and glycosaminoglycans improve toughness of biocompatible double network hydrogels. Adv Mater. 2014;26(3):436–442.
  • Sodhi H, Panitch A. Glycosaminoglycans in tissue engineering: a review. Biomolecules. 2020;11(1):29–22.
  • Catoira MC, Fusaro L, Francesco DD, et al. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019;30(10):1–10.
  • Miguel SP, Ribeiro MP, Brancal H, et al. Thermoresponsive chitosan-agarose hydrogel for skin regeneration. Carbohydr Polym. 2014;111:366–373.
  • Shariatinia Z, Jalali AM. Chitosan-based hydrogels: Preparation, properties and applications. Int J Biol Macromol. 2018;115:194–220.
  • Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49(4):780–792.
  • Zhao X, Lang Q, Yildirimer L, et al. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv Healthc Mater. 2016;5(1):108–118.
  • Guizzardi R, Vaghi L, Marelli M, et al. Gelatin-based hydrogels through homobifunctional triazolinediones targeting tyrosine residues. Molecules. 2019;24(3):589.
  • Bello AB, Kim D, Kim D, et al. Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng Part B Rev. 2020;26(2):164–180.
  • Gomez-Florit M, Pardo A, Domingues RMA, et al. Natural-based hydrogels for tissue engineering applications. Molecules. 2020;25(24):5858–5829.
  • Antoine EE, Vlachos PP, Rylander MN. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev. 2014;20(6):1–62.
  • Leberfinger AN, Ravnic DJ, Dhawan A, et al. Concise review: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med. 2017;6(10):1940–1948.
  • Mahmood A, Patel D, Hickson B, et al. Recent progress in biopolymer-based hydrogel materials for biomedical applications. IJMS. 2022;23(3):1415.
  • Pushpamalar J, Meganathan P, Tan HL, et al. Development of a polysaccharide-based hydrogel drug delivery system (DDS): an update. Gels. 2021;7(4):153.
  • Alam MN, Islam MS, Christopher LP. Sustainable production of cellulose-based hydrogels with superb absorbing potential in physiological saline. ACS Omega. 2019;4(5):9419–9426.
  • Koneru A, Dharmalingam K, Anandalakshmi R. Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose-grapefruit seed extract nanoparticles for potential wound healing applications. Int J Biol Macromol. 2020;148:833–842.
  • O’Connor NA, Syed A, Wong M, et al. Polydopamine antioxidant hydrogels for wound healing applications. Gels. 2020;6(4):39.
  • Shamloo A, Aghababaie Z, Afjoul H, et al. Fabrication and evaluation of chitosan/gelatin/PVA hydrogel incorporating honey for wound healing applications: an in vitro, in vivo study. Int J Pharm. 2021;592:120068.
  • Ravishankar K, Venkatesan M, Desingh RP, et al. Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications. Mater Sci Eng C Mater Biol Appl. 2019;102:447–457.
  • Kawabata S, Kawai K, Somamoto S, et al. The development of a novel wound healing material, silk-elastin sponge. J Biomater Sci Polym Ed. 2017;28(18):2143–2153.
  • Sultan MT, Jeong JY, Seo YB, et al. Fabrication and characterization of the porous duck’s feet collagen sponge for wound healing applications. J Biomater Sci Polym Ed. 2018;29(7-9):960–971.
  • Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485–502.
  • Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: a review. Bioact Mater. 2019;4:271–292.
  • Ramanathan G, Singaravelu S, Muthukumar T, et al. Design and characterization of 3D hybrid collagen matrixes as a dermal substitute in skin tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017;72:359–370.
  • Weller C, Sussman G. Wound dressings update. J Pharm Pract Res. 2006;36(4):318–324.
  • Chandika P, Ko S-C, Oh G-W, et al. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application. Int J Biol Macromol. 2015;81:504–513.
  • Nasajpour A, Ansari S, Rinoldi C, et al. A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics. Adv Funct Mater. 2018;28(3):1703437–1703438.
  • Baghaie S, Khorasani MT, Zarrabi A, et al. Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Ed. 2017;28(18):2220–2241.
  • Asanarong O, Minh Quan V, Boonrungsiman S, et al. Bioactive wound dressing using bacterial cellulose loaded with papain composite: morphology, loading/release and antibacterial properties. Eur Polym J. 2021;143:110224.
  • Kalaycıoğlu Z, Kahya N, Adımcılar V, et al. Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing. Eur Polym J. 2020;133:109777.
  • Behera SS, Das U, Kumar A, et al. Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration. Int J Biol Macromol. 2017;98:329–340.
  • Biranje SS, Madiwale PV, Patankar KC, et al. Cytotoxicity and hemostatic activity of chitosan/carrageenan composite wound healing dressing for traumatic hemorrhage. Carbohydr Polym. 2020;239:116106.
  • Bergonzi C, d'Ayala GG, Elviri L, et al. Alginate/human elastin-like polypeptide composite films with antioxidant properties for potential wound healing application. Int J Biol Macromol. 2020;164:586–596.
  • Valachova K, Svik K, Biro C, et al. Skin wound healing with composite biomembranes loaded by tiopronin or captopril. J Biotechnol. 2020;310:49–53.
  • Savitskaya IS, Shokatayeva DH, Kistaubayeva AS, et al. Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells. Heliyon. 2019;5(10):e02592.
  • Łapa A, Cresswell M, Campbell I, et al. Ga and Ce ion-doped phosphate glass fibres with antibacterial properties and their composite for wound healing applications. J Mater Chem B. 2019;7(44):6981–6993.
  • Tseomashko NE, Rai M, Vasil’kov AY. New hybrid materials for wound cover dressings. In Biopolymer-based nano films. New York: Elsevier; 2021. pp. 203–245.
  • Trivedi S, Srivastava K, Saluja TS, et al. Hydroxyapatite-collagen augments osteogenic differentiation of dental pulp stem cells. Odontology. 2020;108(2):251–259.
  • Kołodziejska B, Kaflak A, Kolmas J. Biologically inspired collagen/apatite composite biomaterials for potential use in bone tissue regeneration—a review. Materials (Basel). 2020;13(7):1748.
  • Bu H, Yang H, Shen L, et al. Glutamic acid concentration dependent collagen mineralization in aqueous solution. Colloids Surf B Biointerfaces. 2020;190:110892.
  • Amaral T, Osewold M, Presser D, et al. Advanced cutaneous squamous cell carcinoma: real world data of patient profiles and treatment patterns. J Eur Acad Dermatol Venereol. 2019;33(S8):44–51.
  • Zhang P, Wang N, Lin X, et al. Expression and localization of heterogeneous nuclear ribonucleoprotein K in mouse ovaries and preimplantation embryos. Biochem Biophys Res Commun. 2016;471(1):260–265.
  • Wu J, Zheng Y, Wen X, et al. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: Investigation in vitro and in vivo. Biomed Mater. 2014;9(3):035005.
  • Rojewska A, Karewicz A, Karnas K, et al. Pioglitazone-loaded nanostructured hybrid material for skin ulcer treatment. Materials (Basel). 2020;13(9):2050.
  • Coelho F, Cavicchioli M, Specian SS, et al. Bacterial cellulose membrane functionalized with hydroxiapatite and anti-bone morphogenetic protein 2: a promising material for bone regeneration. PLoS One. 2019;14(8):e0221286.
  • Akturk O, Kismet K, Yasti AC, et al. Collagen/gold nanoparticle nanocomposites: a potential skin wound healing biomaterial. J Biomater Appl. 2016;31(2):283–301.
  • You C, et al. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep. 2017;7(1):1–11.
  • Niska K, Zielinska E, Radomski MW, et al. Metal nanoparticles in dermatology and cosmetology: Interactions with human skin cells. Chem Biol Interact. 2018;295:38–51.
  • Kalashnikova I, Das S, Seal S. Nanomaterials for wound healing: scope and advancement. Nanomedicine (Lond). 2015;10(16):2593–2612.
  • Rudramurthy GR, Swamy MK. Potential applications of engineered nanoparticles in medicine and biology: an update. J Biol Inorg Chem. 2018;23(8):1185–1204.
  • Ijaola AO, Asmatulu R, Arifa K. Metal-graphene nano-composites with enhanced mechanical properties. In Behavior and Mechanics of Multifunctional Materials IX; 2020, 113771E.
  • Navya PN, Kaphle A, Srinivas SP, et al. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6(1):1–30.
  • Paladini F, Pollini M. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials (Basel). 2019;12(16):2540.
  • Mehwish HM, Liu G, Rajoka MSR, et al. Therapeutic potential of Moringa oleifera seed polysaccharide embedded silver nanoparticles in wound healing. Int J Biol Macromol. 2021;184:144–158.
  • Boomi P, Ganesan R, Prabu Poorani G, et al. Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions. Int J Nanomedicine. 2020;15:7553–7568.
  • Batool M, Khurshid S, Qureshi Z, et al. Adsorption, antimicrobial and wound healing activities of biosynthesised zinc oxide nanoparticles. Chem. Pap. 2021;75(3):893–907.
  • Saddik MS, Alsharif FM, El-Mokhtar MA, et al. Biosynthesis, characterization, and wound-healing activity of phenytoin-loaded copper nanoparticles. AAPS PharmSciTech. 2020;21(5):175.
  • Gu Y, Huang Y, Qiu Z, et al. Vitamin B2 functionalized iron oxide nanozymes for mouth ulcer healing. Sci China Life Sci. 2020;63(1):68–79.
  • Wang M, Su Y, Liu Y, et al. Antibacterial fluorescent nano-sized lanthanum-doped carbon quantum dot embedded polyvinyl alcohol for accelerated wound healing. J Colloid Interface Sci. 2022;608(Pt 1):973–983.
  • Sadidi H, Hooshmand S, Ahmadabadi A, et al. Cerium oxide nanoparticles (nanoceria): hopes in soft tissue engineering. Molecules. 2020;25(19):4559–4525.
  • Kochar MP, Singh SP. Role of nano-collagen particles dressing in the management of chronic ulcer: a prospective non-randomized trial on 100 cases. Int Surg J. 2020;7(3):802–806.
  • Zmejkoski DZ, Marković ZM, Budimir MD, et al. Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. Mater Sci Eng C. 2021;122:111925.
  • Tang Q, Chen C, Jiang Y, et al. Engineering an adhesive based on photosensitive polymer hydrogels and silver nanoparticles for wound healing. J Mater Chem B. 2020;8(26):5756–5764.
  • Zheng K, Torre E, Bari A, et al. Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities. Mater Today Bio. 2020;5:100041.
  • Hasmizam Razali M, Arifah Ismail N, Anuar Mat Amin K. Titanium dioxide nanotubes incorporated gellan gum bio-nanocomposite film for wound healing: effect of TiO2 nanotubes concentration. Int J Biol Macromol. 2020;153:1117–1135.
  • Chang MC, Kuo YJ, Hung KH, et al. Liposomal dexamethasone-moxifloxacin nanoparticle combinations with collagen/gelatin/alginate hydrogel for corneal infection treatment and wound healing. Biomed Mater. 2020;15(5):055022.
  • Jiang Y, Zhao W, Xu S, et al. Bioinspired design of mannose-decorated globular lysine dendrimers promotes diabetic wound healing by orchestrating appropriate macrophage polarization. Biomaterials. 2022;280:121323.
  • Wang J, Wang J, Qiu S, et al. Biodegradable L-lysine-modified amino black phosphorus/poly(l-lactide-coε-caprolactone) nanofibers with enhancements in hydrophilicity, shape recovery and osteodifferentiation properties. Colloids Surf B Biointerfaces. 2022;209(Pt 2):112209.
  • Khan AUR, Huang K, Jinzhong Z, et al. Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles. J Mater Chem B. 2021;9(5):1452–1465.
  • Huang S, Liu H, Liao K, et al. Functionalized GO nanovehicles with nitric oxide release and photothermal activity-based hydrogels for bacteria-infected wound healing. ACS Appl Mater Interfaces. 2020;12:28952–28964.
  • Malhotra K, Shankar S, Rai R, et al. Broad-spectrum antibacterial activity of proteolytically stable self-assembled αγ-hybrid peptide gels. Biomacromolecules. 2018;19(3):782–792.
  • Qin P, Meng Y, Yang Y, et al. Mesoporous polydopamine nanoparticles carrying peptide RL-QN15 show potential for skin wound therapy. J Nanobiotechnol. 2021;19(1):309.
  • Khampieng T, Wongkittithavorn S, Chaiarwut S, et al. Silver nanoparticles-based hydrogel: Characterization of material parameters for pressure ulcer dressing applications. J Drug Deliv Sci Technol. 2018;44:91–100.
  • Pannerselvam B, Dharmalingam Jothinathan MK, Rajenderan M, et al. An in vitro study on the burn wound healing activity of cotton fabrics incorporated with phytosynthesized silver nanoparticles in male Wistar albino rats. Eur J Pharm Sci. 2017;100:187–196.
  • Bamidele EA, et al. Discovery and prediction capabilities in metal-based nanomaterials: an overview of the application of machine learning techniques and some recent advances. Adv Eng Informatics. 2022;52:101593.
  • Hamdan S, Pastar I, Drakulich S, et al. Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications. ACS Cent Sci. 2017;3(3):163–175.
  • Rajendran NK, Kumar SSD, Houreld NN, et al. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol. 2018;44:421–430.
  • Sengul AB, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett. 2020;18(5):1659–1683.
  • Garg T, Rath G, Goyal AK. Comprehensive review on additives of topical dosage forms for drug delivery. Drug Deliv. 2015;22(8):969–987.
  • Thapa RK, Diep DB, Tønnesen HH. Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomater. 2020;103:52–67.
  • Mi G, Shi D, Herchek W, et al. Self-assembled arginine-rich peptides as effective antimicrobial agents. J Biomed Mater Res A. 2017;105(4):1046–1054.
  • Uddin MN, Desai F, Asmatulu E. Engineered nanomaterials in the environment: bioaccumulation, biomagnification and biotransformation. Environ Chem Lett. 2020;18(4):1073–1083.
  • Arora S, Tyagi N, Bhardwaj A, et al. Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis. Nanomedicine. 2015;11(5):1265–1275.
  • Szmyd R, Goralczyk AG, Skalniak L, et al. Effect of silver nanoparticles on human primary keratinocytes. Biol Chem. 2013;394(1):113–123.
  • Barroso A, Mestre H, Ascenso A, et al. Nanomaterials in wound healing: from material sciences to wound healing applications. Nano Sel. 2020;1(5):443–460.
  • Choi HW, Kim J, Kim J, et al. Light-induced acid generation on a gatekeeper for smart nitric oxide delivery. ACS Nano. 2016;10(4):4199–4208.
  • Sun L, Li M, Gong T, et al. Preparation and evaluation of an innovative antibacterial bi-layered composite dressing for skin wound healing. J Tissue Viability. 2021;30(3):454–461.
  • Yao CH, Lee CY, Huang CH, et al. Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. Mater Sci Eng C Mater Biol Appl. 2017;79:533–540.
  • Sumathy B, Nair PD. Keratinocytes-hair follicle bulge stem cells-fibroblasts co-cultures on a tri-layer skin equivalent derived from gelatin/PEG methacrylate nanofibers. J Biomater Sci Polym Ed. 2020;31(7):869–894.
  • Lin HY, Chen SH, Chang SH, et al. Tri-layered chitosan scaffold as a potential skin substitute. J Biomater Sci Polym Ed. 2015;26(13):855–867.
  • Goswami M, Kumar N, Li Y, et al. Comparison of water nanodroplet properties on different graphite-based substrates. AIP Adv. 2021;11(3):035009.
  • Drelich JW. Contact angles: from past mistakes to new developments through liquid-solid adhesion measurements. Adv Colloid Interface Sci. 2019;267:1–14.
  • Baddam Y, Ijaola AO, Asmatulu E. Fabrication of flame-retardant and superhydrophobic electrospun nanofibers. Surf Interfaces. 2021;23:101017.
  • Uddin MN, Desai FJ, Subeshan B, et al. Sustainable atmospheric fog water generator through superhydrophobic electrospun nanocomposite fibers of recycled expanded polystyrene foams. Surf Interfaces. 2021;25:101169.
  • Ijaola AO, Bamidele EA, Akisin CJ, et al. Wettability transition for laser textured surfaces: a comprehensive review. Surf Interfaces. 2020;21:100802.
  • Ijaola AO, Farayibi PK, Asmatulu E. Superhydrophobic coatings for steel pipeline protection in oil and gas industries: a comprehensive review. J Nat Gas Sci Eng. 2020;83:103544.
  • Neto AI, Levkin PA, Mano JF. Patterned superhydrophobic surfaces to process and characterize biomaterials and 3D cell culture. Mater Horiz. 2018;5(3):379–393.
  • Guo S, Zhu X, Li M, et al. Parallel control over surface charge and wettability using polyelectrolyte architecture: effect on protein adsorption and cell adhesion. ACS Appl Mater Interfaces. 2016;8(44):30552–30563.
  • Papenburg BJ, Rodrigues ED, Wessling M, et al. Insights into the role of material surface topography and wettability on cell-material interactions. Soft Matter. 2010;6(18):4377–4388.
  • Nosrati H, et al. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J Nanobiotechnol. 2021;19(1):1–22.
  • Miguel SP, Ribeiro MP, Coutinho P, et al. Electrospun polycaprolactone/aloe vera_chitosan nanofibrous asymmetric membranes aimed for wound healing applications. Polymers (Basel). 2017;9(12):183.
  • Kumbar SG, Nukavarapu SP, James R, et al. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials. 2008;29(30):4100–4107.
  • Madaghiele M, Salvatore L, Sannino A. Tailoring the pore structure of foam scaffolds for nerve regeneration. Biomed Foam Tissue Eng Appl. 2014;2014:101–128.
  • Zhang Y, Chwee TL, Ramakrishna S, et al. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med. 2005;16(10):933–946.
  • ASTM International—Standards Worldwide.
  • Han F, Dong Y, Su Z, et al. Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material. Int J Pharm. 2014;476(1–2):124–133.
  • Su T, Zhang M, Zeng Q, et al. Mussel-inspired agarose hydrogel scaffolds for skin tissue engineering. Bioact Mater. 2021;6(3):579–588.
  • Movahedi M, Asefnejad A, Rafienia M, et al. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: in vitro and in vivo evaluation. Int J Biol Macromol. 2020;146:627–637.
  • Kumari S, Singh BN, Srivastava P. Effect of copper nanoparticles on physico-chemical properties of chitosan and gelatin-based scaffold developed for skin tissue engineering application. 3 Biotech. 2019;9(3):1–14.
  • Séon-Lutz M, Couffin AC, Vignoud S, et al. Electrospinning in water and in situ crosslinking of hyaluronic acid/cyclodextrin nanofibers: towards wound dressing with controlled drug release. Carbohydr Polym. 2019;207:276–287.
  • Dolcimascolo A, Calabrese G, Conoci S, et al. Innovative biomaterials for tissue engineering. In Biomaterial-supported tissue reconstruction or regeneration. London: IntechOpen; 2019.
  • Lima LL, Taketa TB, Beppu MM, et al. Coated electrospun bioactive wound dressings: Mechanical properties and ability to control lesion microenvironment. Mater Sci Eng C Mater Biol Appl. 2019;100:493–504.
  • Zahouani H, Pailler‐Mattei C. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. Wiley Online Libr. 2009;15(1):68–76.
  • Luebberding S. Mechanical properties of human skin in vivo: a comparative evaluation in 300 men and women. Wiley Online Libr. 2013;20(2):127–135.
  • Vázquez N. Influence of the PLGA/gelatin ratio on the physical, chemical and biological properties of electrospun scaffolds for wound dressings. iopscience.iop.org. 2019;14:45006.
  • Jafari A, Amirsadeghi A, Hassanajili S, et al. Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing. Int J Pharm. 2020;583:119413. Jun
  • Khil MS, Il Cha D, Kim HY, et al. Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater. 2003;67(2):675–679.
  • Ullah S, Chen X. Fabrication, applications and challenges of natural biomaterials in tissue engineering. Appl Mater Today. 2020;20:100656.
  • Dhandayuthapani B, Yoshida Y, Maekawa T, et al. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:1–19.
  • Karuppuswamy P, Venugopal JR, Navaneethan B, et al. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications. Appl Surf Sci. 2014;322:162–168.
  • Boccaccini AR, Erol M, Stark WJ, et al. Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol. 2010;70(13):1764–1776.
  • Jaidev LR, Chatterjee K. Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Mater Des. 2019;161:44–54.
  • Ju J, Gu Z, Liu X, et al. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Int J Biol Macromol. 2020;147:1164–1173.
  • Lin WC, Lien CC, Yeh HJ, et al. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym. 2013;94(1):603–611.
  • Chen Y, Yan L, Yuan T, et al. Asymmetric polyurethane membrane with in situ-generated nano-TiO2 as wound dressing. J Appl Polym Sci. 2011;119(3):1532–1541.
  • Hashemi Doulabi A, Mirzadeh H, Imani M, et al. Chitosan/polyethylene glycol fumarate blend film: Physical and antibacterial properties. Carbohydr Polym. 2013;92(1):48–56.
  • Sobhanian P, Khorram M, Hashemi SS, et al. Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute. Int J Biol Macromol. 2019;130:977–987.
  • Letha SS, Kumar AS, Nisha U, et al. Electrospun polyurethane-gelatin artificial skin scaffold for wound healing. J Text Inst. 2021;2021:1–10.
  • Yin J, Fang Y, Xu L, et al. High-throughput fabrication of silk fibroin/hydroxypropyl methylcellulose (SF/HPMC) nanofibrous scaffolds for skin tissue engineering. Int J Biol Macromol. 2021;183:1210–1221.
  • Miguel SP, Moreira AF, Correia IJ. Chitosan based-asymmetric membranes for wound healing: a review. Int J Biol Macromol. 2019;127:460–475.
  • Xu R, Xia H, He W, et al. Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci Rep. 2016;6(1):1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.