164
Views
5
CrossRef citations to date
0
Altmetric
Articles

Modeling of wave propagation in thin graphene sheets with WLP-FDTD method

, , &
Pages 780-787 | Received 19 Nov 2015, Accepted 23 Jan 2016, Published online: 06 Apr 2016
 

Abstract

In this paper, an efficient finite-difference time-domain (FDTD) method with weighted Laguerre polynomials is proposed to model electromagnetic wave propagation in thin graphene sheets accurately. The proposed method incorporates the intraband terms of the surface conductivity of graphene and introduces an auxiliary differential equation technique to establish the relationship between the electric field intensity and conduct electric current in graphene. Two numerical examples with wave propagation in thin graphene sheet are calculated. Compared with the FDTD method, the results from the proposed method show its accuracy and efficiency.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.