164
Views
5
CrossRef citations to date
0
Altmetric
Articles

Modeling of wave propagation in thin graphene sheets with WLP-FDTD method

, , &
Pages 780-787 | Received 19 Nov 2015, Accepted 23 Jan 2016, Published online: 06 Apr 2016

References

  • Geim AK, Novoselov KS. The rise of graphene. Nat. Mater. 2007;6:183–191.10.1038/nmat1849
  • Novoselov KS, Fal’ko VI, Colombo L, et al. A roadmap for graphene. Nature. 2012;490:192–200.10.1038/nature11458
  • Tamagnone M, Gomez-Diaz JS, Mosig JR, et al. Reconfigurable terahertz plasmonic antenna concept using a graphene stack. IEEE Trans. Antennas Propag. 2012;101:214102-1–214102-3.
  • Llatser I, Kremers C, Cabellos-Aparicio A, et al. Graphene-based nano-patch antenna for terahertz radiation. Photonics Nanostruct. Fundam. Appl. 2012;10:353–358.10.1016/j.photonics.2012.05.011
  • Lin H, Pantoja MF, Angulo LD. FDTD modeling of graphene devices using complex conjugate dispersion material model. IEEE Microwave Wireless Compon. Lett. 2012;22:612–614.10.1109/LMWC.2012.2227466
  • Yu X, Sarris CD. A perfectly matched layer for subcell FDTD and applications to the modeling of graphene structures. TEEE Antennas Wireless Propag. Lett. 2012;11:1080–1083.
  • Bouzianas GD, Kantartzis NV, Antonopoulos CS, et al. Optimal modeling of infinite graphene sheets via a class of generalized FDTD schemes. IEEE Trans. Magn. 2012;48:379–382.10.1109/TMAG.2011.2172778
  • Nayyeri V, Soleimani M, Ramahi OM. Modeling graphene in the finite-difference time-domain method using a surface boundary condition. IEEE Trans. Antennas Propag. 2013;61:4176–4182.10.1109/TAP.2013.2260517
  • Mak JC, Sarris CD. FDTD-compatible broadband surface impedance boundary conditions for graphene. In: Proceedings of International Conference on Electromagnetics in Advanced Applications (ICEAA 2013); Torino, Italy. 2013. p. 740–743.
  • Bouzianas GD, Kantartzis NV, Yioultsis TV, et al. Consistent study of graphene structures through the direct incorporation of surface conductivity. IEEE Trans. Microw. Theory Tech. 2014;50:7003804-1–7003804-4.
  • Ahmed I, Khoo EH, Li E. Efficient modeling and simulation of graphene devices with the LOD-FDTD method. IEEE Microwave Wireless Compon. Lett. 2013;23:306–308.10.1109/LMWC.2013.2258463
  • de Oliveira RMS, Rodrigues NRNM, Dmitriev V. FDTD formulation for graphene modeling based on piecewise linear recursive convolution and thin material sheets techniques. IEEE Antennas Wirel. Propag. Lett. 2015;14:767–770.10.1109/LAWP.2014.2378174
  • Salski B. An FDTD model of graphene intraband conductivity. IEEE Trans. Microwave Theory Tech. 2014;62:1570–1578.10.1109/TMTT.2014.2331620
  • Amanatiadis SA, Kantartzis NV, Tsiboukis TD. A loss-controllable absorbing boundary condition for surface plasmon polaritons propagating onto graphene. IEEE Trans. Microw. Theory Tech. 2015;51:7205304-1–7205304-4.
  • Hanson GW. Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008;103:064302-1–064302-8.
  • Chung YS, Sarkar TK, Jung BH, et al. An unconditionally stable scheme for the finite-difference time-domain method. IEEE Trans. Microwave Theory Tech. 2003;51:697–704.10.1109/TMTT.2003.808732
  • Chen W-J, Shao W, Li J-L, et al. Numerical dispersion analysis and key parameter selection in Laguerre-FDTD method. IEEE Microw. Wireless Compon. Lett. 2013;23:629–631.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.