88
Views
11
CrossRef citations to date
0
Altmetric
Articles

Fractional order theory to an infinite thermo-viscoelastic body with a cylindrical cavity in the presence of an axial uniform magnetic field

&
Pages 495-513 | Received 23 Jan 2016, Accepted 08 Jan 2017, Published online: 08 Feb 2017
 

Abstract

The model of fractional time-derivative of generalized magneto–thermo–viscoelasticity equations for isotropic media in the presence of a constant magnetic field is considered. Some essential theorems on the linear coupled and generalized theories of thermo-viscoelasticity can be easily obtained. This model is applied to solve a problem of an infinite body with a cylindrical cavity in the presence of an axial uniform magnetic field. The boundary of the cavity is subjected to a combination of thermal and mechanical shock acting for a finite period of time. Laplace transform techniques are used to derive the solution in the Laplace transform domain. The inversion process is carried out using a numerical method based on Fourier series expansions. Numerical computations for the temperature, the displacement and the stress distributions as well as for the induced magnetic and electric fields are carried out and represented graphically. Comparisons are made with the results predicted by the generalizations, Lord–Shulman theory, and Green–Lindsay theory as well as to the coupled theory.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.