88
Views
11
CrossRef citations to date
0
Altmetric
Articles

Fractional order theory to an infinite thermo-viscoelastic body with a cylindrical cavity in the presence of an axial uniform magnetic field

&
Pages 495-513 | Received 23 Jan 2016, Accepted 08 Jan 2017, Published online: 08 Feb 2017

References

  • Tschegl NW. Time dependence in material properties: an overview. Mech Time-Depend Mater. 1997;1:3–31.10.1023/A:1009748023394
  • Gross B. Mathematical structure of the theories of viscoelasticity. Paris: Hermann; 1953.
  • Atkinson C, Craster RV. Theoretical aspects of fracture mechanics. Prog Aerospace Sci. 1995;31:1–83.
  • Rajagopal KR, Saccomandi G. On the dynamics of non-linear viscoelastic solids with material moduli that depend upon pressure. Int J Eng Sci. 2007;45:41–54.10.1016/j.ijengsci.2006.07.015
  • Ilioushin A, Pobedria B. Fundamentals of the mathematical theory of thermal viscoelasticity. Moscow: Nauka; 1970. In Russian.
  • Tanner R. Engineering rheology. Oxford: Oxford University Press; 1988.
  • Biot M. Thermoelasticity and irreversible thermodynamics. J Appl Phys. 1956;27:240–253.10.1063/1.1722351
  • Chandrasekharaiah DS. Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev. 1998;51:705–729.10.1115/1.3098984
  • Lord H, Shulman YA. A generalized dynamical theory of thermoelasticity. J Mech Phys Solids. 1967;15:299–309.10.1016/0022-5096(67)90024-5
  • Green A, Lindsay K. Thermoelasticity. J Elast. 1972;2:1–7.10.1007/BF00045689
  • Cattaneo C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compt Rend. 1958;247:431–433.
  • Vernotte P. Les paradoxes de la theorie continue de l’equation de la chaleur [The paradoxes of the continuous theory of heat equation]. Compt Rend. 1958;246:3154–3155.
  • Vernotte P. Some possible complications in the phenomena of thermal conduction. Compt Rend. 1961;252:2190–2191.
  • Ezzat MA, El-Karamany AS. The uniqueness and reciprocity theorems for generalized thermoviscoelasticity for anisotropic media. J Therm Stresses. 2002;25:507–522.10.1080/01495730290074261
  • Ezzat MA, El-Karamany AS. On uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with thermal relaxation. Can J Phys. 2003;81:823–833.10.1139/p03-070
  • Ezzat MA, El-Karamany AS. The uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with two relaxation times. Int J Eng Sci. 2002;40:1275–1284.10.1016/S0020-7225(01)00099-4
  • El-Karamany AS, Ezzat MA. On the three-phase-lag linear micropolar thermoelasticity theory. Eur J Mech A Solids. 2013;40:198–208.10.1016/j.euromechsol.2013.01.011
  • El-Karamany AS, Ezzat MA. On the boundary integral formulation of thermo-viscoelasticity theory. Int J Eng Sci. 2002;40:1943–1956.10.1016/S0020-7225(02)00043-5
  • El-Karamany AS, Ezzat MA. Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times. Appl Math Comput. 2004;151:347–362.10.1016/S0096-3003(03)00345-X
  • El-Karamany AS, Ezzat MA. Discontinuities in generalized thermo-viscoelasticity under four theories. J Therm Stress. 2004;27:1187–1212.10.1080/014957390523598
  • Nowinski JL. Theory of thermoelasticity with applications. Alphen Aan Den Rijn: Sijthoff & Noordhoff International; 1978.10.1007/978-94-009-9929-9
  • Nayfeh A, Nemat-Nasser S. Electromagneto-thermoelastic plane waves in solids with thermal relaxation. J Appl Mech Ser E. 1972;39:108–113.
  • Roy Choudhuri S. Electro-magneto-thermo-elastic plane waves in rotating media with thermal relaxation. Int J Eng Sci. 1984;22:519–530.10.1016/0020-7225(84)90054-5
  • El-Karamany AS, Ezzat MA. Uniqueness and reciprocal theorems in linear micropolar electro-magnetic thermoelasticity with two relaxation times. Mech Time-Depend Mater. 2009;13:93–115.10.1007/s11043-008-9068-3
  • El-Karamany AS, Ezzat MA. Propagation of discontinuities in thermopiezoelectric rod. J Therm Stress. 2005;28:997–1030.10.1080/01495730590964954
  • Sherief HH, Ezzat MA. A problem in generalized magneto-thermoelasticity for an infinitely long annular cylinder. J Eng Math. 1998;34:387–402.10.1023/A:1004376014083
  • Ezzat MA. Free convection effects on perfectly conducting fluid. Int J Eng Sci. 2001;39:799–819.10.1016/S0020-7225(00)00059-8
  • Ezzat MA. The relaxation effects of the volume properties of electrically conducting viscoelastic material. Mater Sc Eng B. 2006;130:11–23.10.1016/j.mseb.2006.01.020
  • Ezzat MA, El-Bary AA. Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. Int J Therm Sci. 2016;108:62–69.
  • Ezzat MA, El-Bary AA. Modeling of fractional magneto-thermoelasticity for a perfect conducting materials. Smart Struct Syst. 2016;18:707–731.10.12989/sss.2016.18.4.707
  • Ezzat MA, Othman MI. State-space approach to generalized magnetothermoelasticity with thermal relaxation in a medium of perfect conductivity. J Therm Stress. 2002;25:409–429.10.1080/01495730252890168
  • Ezzat MA, El-Karamany AS. Magnetothermoelasticity with two relaxation times in conducting medium with variable electrical and thermal conductivity. Appl Math Comput. 2003;142:449–467.
  • Ezzat MA, El-Karamany AS. Propagation of discontinuities in magneto-thermoelastic half-space. J Therm Stress. 2006;29:331–358.10.1080/01495730500360526
  • Caputo M, Mainardi F. Linear model of dissipation in an elastic solids. Riv Nuovo Cimento. 1971;1:161–198.10.1007/BF02820620
  • Caputo M. Vibrations of an infinite viscoelastic layer with a dissipative memory. J Acoust Soc Am. 1974;56:897–904.10.1121/1.1903344
  • Adolfsson K, Enelund M, Olsson P. On the fractional order model of viscoelasticity. Mech Time-Depend Mater. 2005;9:15–34.10.1007/s11043-005-3442-1
  • Povstenko YZ. Thermoelasticity that uses fractional heat conduction equation. J Math Sci. 2009;162:296–305.10.1007/s10958-009-9636-3
  • Povstenko YZ. Fractional Cattaneo-type equations and generalized thermoelasticity. J Therm Stress. 2011;34:97–114.10.1080/01495739.2010.511931
  • Mainardi F. Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri A, Mainardi F, editors. Fractals and fractional calculus in continuum mechanics. New York (NY): Springer-Verlag; 1997. p. 291–348.10.1007/978-3-7091-2664-6
  • Podlubny I. Fractional differential equations. New York (NY): Academic Press; 1999.
  • Ezzat MA. Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Phys B. 2011;406:30–35.10.1016/j.physb.2010.10.005
  • Ezzat MA. Thermoelectric MHD with modified Fourier’s law. Int J Therm Sci. 2011;50:449–455.10.1016/j.ijthermalsci.2010.11.005
  • Ezzat MA. Theory of fractional order in generalized thermoelectric MHD. Appl Math Model. 2011;35:4965–4978.10.1016/j.apm.2011.04.004
  • Ezzat MA. State space approach to thermoelectric fluid with fractional order heat transfer. Heat Mass Trans. 2012;48:71–82.10.1007/s00231-011-0830-8
  • El-Karamany AS, Ezzat MA. On fractional thermoelasticity. Math Mech Solids. 2011;16:334–346.10.1177/1081286510397228
  • El-Karamany AS, Ezzat MA. Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J Therm Stress. 2011;34:264–284.10.1080/01495739.2010.545741
  • Ezzat MA, El-Karamany AS. Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures. ZAMP. 2011;62:937–952.10.1007/s00033-011-0126-3
  • Ezzat MA, El-Karamany AS. Theory of fractional order in electro-thermoelasticity. Eur J Mech A Solids. 2011;30:491–500.10.1016/j.euromechsol.2011.02.004
  • Ezzat MA, El-Bary AA. MHD free convection flow with fractional heat conduction law. MHD. 2012;48:587–606.
  • Ezzat MA, El-Bary AA. Unified fractional derivative models of magneto-thermo-viscoelasticity theory. Arch Mech. 2016;68:285–308.
  • Ezzat MA, AlSowayan NS, Al-Muhiameed ZI, et al. Fractional modelling of Pennes’ bioheat transfer equation. Heat Mass Trans. 2014;50:907–914.10.1007/s00231-014-1300-x
  • Ezzat MA, El-Karamany AS, El-Bary AA, et al. Fractional ultrafast laser-induced magneto-thermoelastic behavior in perfect conducting metal films. J Electromagn Waves Appl. 2014;28:64–82.10.1080/09205071.2013.855616
  • Ezzat MA, El-Bary AA. Two-temperature theory of magneto-thermo-viscoelasticity with fractional derivative and integral orders heat transfer. J Electromagn Waves Appl. 2014;28:1985–2004.10.1080/09205071.2014.953639
  • Honig G, Hirdes U. A method for the numerical inversion of Laplace transforms. J Comput Appl Math. 1984;10:113–132.10.1016/0377-0427(84)90075-X
  • Ezzat MA, Zakaria M, Shaker O, et al. State space formulation to viscoelastic fluid flow of magnetohydrodynamic free convection through a porous medium. Acta Mech. 1996;119:147–164.10.1007/BF01274245
  • Ezzat MA. State space approach to unsteady two-dimensional free convection flow through a porous medium. Can J Phys. 1994;72:311–317.10.1139/p94-045
  • Ezzat MA, El-Karamany AS, El-Bary AA. A novel magneto-thermoelasticity theory with memory-dependent derivative. J Electromagn Waves Appl. 2015;29:1018–1031.10.1080/09205071.2015.1027795
  • El-Karamany AS, Ezzat MA. Thermal shock problem in generalized thermo-viscoelasticty under four theories. Int J Eng Sci. 2004;42:649–671.10.1016/j.ijengsci.2003.07.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.