1,333
Views
82
CrossRef citations to date
0
Altmetric
Reviews

Effective factors on the performance of microbial fuel cells in wastewater treatment – a review

, , &
Pages 71-89 | Received 26 Jan 2015, Accepted 25 Jul 2015, Published online: 23 Sep 2015
 

Abstract

Microbial fuel cell (MFC) is a novel technology that can be used for electricity generation during oxidization of the organic substances presented in the substrate. To obtain a desirable performance, it is essential to understand the influential factors on the MFC. Among the numerous factors affecting the MFC performance, substrate, microorganisms and their metabolism, electron transfer mechanism in an anodic chamber, electrodes material and the shape of electrodes, type of membrane, operating conditions such as temperature, pH and salinity, electron acceptor in a cathodic chamber and geometric design of the MFC are considered as the most important factors. Among different substrates, wastewater is a sustainable rich medium which can be treated by MFCs. There are various types of exoelectrogenic bacteria presented in wastewaters which can oxidize organic matter and transfer electrons to the anode without using mediators. Like other microbial systems, optimum pH and temperature enhance the bacterial growth which can improve the MFC performance. Despite the negative effect of salt on microbial growth, higher salinity and ionic strength can increase the conductivity of substrate and therefore enhance MFC performance. Scaling up MFC is a controversial issue which needs a comprehensive understanding of these factors. By using new inexpensive materials for electrodes and membrane for manufacturing MFCs, a more cost-effective design for scalable wastewater treatment and high power generation can be achieved. Furthermore, MFC is a suitable candidate for bioremediation of contaminated groundwater. These factors and their impact on the MFC performance have been reviewed in the present survey.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.