1,333
Views
82
CrossRef citations to date
0
Altmetric
Reviews

Effective factors on the performance of microbial fuel cells in wastewater treatment – a review

, , &
Pages 71-89 | Received 26 Jan 2015, Accepted 25 Jul 2015, Published online: 23 Sep 2015

References

  • Khawaji AD, Kutubkhanah IK, Wie JM. Advances in seawater desalination technologies. Desalination. 2008;221:47–69.
  • Oh ST, Kim JR, Premier GC, Lee TH, Kim C, Sloan WT. Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv. 2010;28:871–881.
  • Pham TH, Rabaey K, Aelterman P, et al. Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci. 2006;6:285–292.
  • Logan BE. Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol. 2005;52:31–7.
  • Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv. 2007;25:464–482.
  • Mohan SV, Saravanan R, Veer Raghavulu S, Mohanakrishna G, Sarma PN. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte. Bioresour Technol. 2008;99:596–603.
  • Xia X, Tokash JC, Zhang F, Liang P, Huang X, Logan BE. Oxygen reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. Environ Sci Technol. 2013;47:2085–2091.
  • Liu H, Grot S, Logan BE. Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol. 2005;39:4317–4320.
  • Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006;14:512–518.
  • Cao X, Hung X, Liang P, et al. A new method for water desalination using microbial desalination cells. Environ Sci Technol. 2009;43:7148–7152.
  • Luo H, Xu P, Roane TM, Jenkins PE, Ren Z. Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour Technol. 2012;105:60–66.
  • Jacobson KS, Drew DM, He Z. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresour Technol. 2011;102:376–380.
  • Jacobson KS, Drew DM, He Z. Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ Sci Technol. 2011;45:4652–4657.
  • Lou H, Jenkins PE, Ren Z. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ Sci Technol. 2011;45:340–344.
  • Qu Y, Feng Y, Wang X, et al. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour Technol. 2012;106:89–94.
  • Kim Y, Logan BE. Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems. Desalination. 2012;308:115–121.
  • Bresadola M. Medicine and science in the life of Luigi Galvani (1737–1798). Brain Res Bull. 1998;46:367–380.
  • Potter MC. Electrical effects accompanying the decomposition of organic compounds. Royal Soc. 1911;84:260–276.
  • Cohen B. The bacterial culture as an electrical half-cell. J Bacteriol. 1931;21:18–9.
  • Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005;23:291–298.
  • Bullen RA, Arnot TC, Lakemanc JB, Walsh FC. Biofuel cells and their development. Biosens Bioelectron. 2006;21:2015–2045.
  • Habermann W, Pommer EH. Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol. 1991;35:128–33.
  • Zhoua M, Chia M, Luob J, Hea H, Jin T. An overview of electrode materials in microbial fuel cells. J Power Sources. 2011;196:4427–4435.
  • Franks AE, Nevin KP. Microbial fuel cells, a current review. Energies. 2010;3:899–919.
  • Pant D, Bogaert GV, Diels L, Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol. 2010;101:1533–1543.
  • Logan BE, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40:5181–5192.
  • Davis F, Higson SPJ. Biofuel cells—recent advances and applications. Biosens Bioelectron. 2007;22:1224–1235.
  • Rabaey K, Keller J. Microbial fuel cell cathodes: from bottleneck to prime opportunity? Water Sci Technol. 2008;57(5):655–659.
  • Rodrigo MA, Cãnizares P, Lobato J, Paz R, Śaez C, Linares JJ. Production of electricity from the treatment of urban waste water using a microbial fuel cell. J Power Sources. 2007;169:198–204.
  • Park D, Kim S, Shin I, Jeong Y. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotechnol Lett. 2000;22:1301–1304.
  • Rahimnejad M, Najafpour GD, Ghoreyshi AA, Shakeri M, Zare H. Methylene blue as electron promoters in microbial fuel cell. Int J Hydrogen Energy. 2011;36:13335–13341.
  • Park DH, Zeikus JG. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane driven fumarate reduction and energy conservation. J Bacteriol. 1999;181:2403–10.
  • Rahimnejad M, Ghoreyshi AA, Najafpour G, Jafary T. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl Energy. 2011;88:3999–4004.
  • Shukla AK, Suresh P, Berchmans S, Rajendran A. Biological fuel cells and their applications. Curr Sci. 2004;87:455–468.
  • Jong BC, Kim B, Chang I, Liew P, Choo Y, Kang G. Enrichment, performance, and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ Sci Technol. 2006;40:6449–6454.
  • Tanaka K, Vega CA, Tamamushi R. Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells. Bioelectrochem Bioenerg. 1983;11:289–297.
  • Adelaja O, Keshavarz T, Kyazze G. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells. J Hazard Mater. 2015;283:211–217.
  • Fatemi S, Ghoreyshi AA, Najafpour G, Rahimnejad M. Bioelectricity generation in mediator-less microbial fuel cell: application of pure and mixed cultures. Iran J Energy Environ. 2012;3:104–108.
  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH. A mediatorless microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol. 2002;30:145–152.
  • Gil GC, Chang IS, Kim BH, et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron. 2003;18:327–334.
  • Gorby YA, Yanina S, McLean JS, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA. 2006;103:11358–11363.
  • Ieropoulos IA, Greenmana J, Melhuish C, Hart J. Comparative study of three types of microbial fuel cell. Enzyme Microb Technol. 2005;37:238–245.
  • Sammes N. Fuel cell technology reaching towards commercialization. London: Springer, Verlag; 2006.
  • Schroder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. PhysChemChemPhys. 2007;9:2619–29.
  • Richter K, Schicklberger M, Gescher J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol. 2012;78:913–921.
  • Lovley DR. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev. 1991;78:259–287.
  • Kim JR, Dec J, Bruns MA, Logan BE. Removal of odors from swine wastewater by using microbial fuel cells. Appl Environ Microbiol. 2008;74:2540–2543.
  • Kim JR, Min B, Logan BE. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol. 2005;68:23–30.
  • Thauer RK, Jungermann K, Decker K. Energy-conservation in chemotropic anaerobic bacteria. Bacteriol Rev. 1977;41:100–180.
  • Rismani-Yazdi H, Christy AD, Carver SM, Dehority ZYA, Tuovinen OH. Effect of external resistance on bacterial diversity and metabolism in cellulose-fed microbial fuel cells. Bioresour Technol. 2011;102:278–283.
  • Chen C-Y, Chen T-Y, Chung Y-C. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes. Environ Technol. 2014;35:286–293.
  • Ringeisen BR, Ray R, Little B. A miniature microbial fuel cell operating with an aerobic anode chamber. J Power Sources. 2007;165:591–597.
  • Chen Y-M, Wang C-T, Yang Y-C, Chen W-J. Application of aluminum-alloy mesh composite carbon cloth for the design of anode/cathode electrodes in Escherichia coli microbial fuel cell. Int J Hydrogen Energy. 2013;38:11131–11137.
  • Choi Y, Jung E, Kim S, Jung S. Membrane fluidity sensoring microbial fuel cell. Bioelectrochemistry. 2003;59:121–127.
  • Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol. 2003;69:1548–1555.
  • Mathuriya AS. Inoculum selection to enhance performance of a microbial fuel cell for electricity generation during wastewater treatment. Environ Technol. 2013. doi:10.1080/09593330.2013.808674
  • Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol. 2009;7:375–381.
  • Mathuriya AS. Inoculum selection to enhance performance of a microbial fuel cell for electricity generation during wastewater treatment. Environ Technol. 2013;34:1957–1964.
  • Cheng S, Liu H, logan BE. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol. 2006;40:364–369.
  • Cheng S, Logan BE. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun. 2007;9:492–496.
  • Cheng S, Logan BE. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour Technol. 2011;102:4468–4473.
  • Cheng S, Xing D, Logan BE. Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens Bioelectron. 2011;26:1913–1917.
  • Yates MD, Kiely PD, Call DF, et al. Convergent development of anodic bacterial communities in microbial fuel cells. ISME J. 2012;6:2002–2013.
  • Kim BH, Park HS, Kim HJ, et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol. 2004;63:672–681.
  • Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng. 2007;97:1398–1407.
  • Bond R, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 2002;295:483–485.
  • Futamata H, Bretschger O, Cheung A, Kan J, Owen R, Nealson KH. Adaptation of soil microbes during establishment of microbial fuel cell consortium fed with lactate. J Biosci Bioeng. 2013;115:58–63.
  • Sangcharoen A, Niyom W, Suwannasilp BB. A microbial fuel cell treating organic wastewater containing high sulfate under continuous operation: performance and microbial community. Process Biochem; 2015. doi:10.1016/j.procbio.2015.06.013
  • Nor MHM, Mubarak MFM, Elmi HSA, Ibrahim N, Wahab MFA, Ibrahim Z. Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge. Bioresour Technol. 2015;190:458–465.
  • Kim KY, Chae KJ, Choi MJ, et al. Enhanced Coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes. Bioresour Technol. 2011;102:4144–4149.
  • Zuo Y, Logan BE. Power generation in MFCs with architectures based on tubular cathodes or fully tubular reactors. Water Sci Technol. 2011;64:2253–8.
  • Liu H, Cheng S, Logan BE. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol. 2005;39:658–662.
  • Hassan SHA, Kim YS, Oh S-E. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzyme Microb Technol. 2012;51:269–273.
  • Cheng S, Kiely P, Logan BE. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous–cathode MEC improves power generation in air–cathode MFCs. Bioresour Technol. 2011;102:367–371.
  • Ahmad F, Atiyeh MN, Pereira B, Stephanopoulos GN. A review of cellulosic microbial fuel cells: performance and challenges. Biomass Bioenergy. 2013;56:179–188.
  • Logana BE, Murano C, Scott K, Gray ND, Head IM. Electricity generation from cysteine in a microbial fuel cell. Water Res. 2005;39:942–952.
  • Liu G, Yates MD, Cheng S, Call DF, Sun D, Logan BE. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments. Bioresour Technol. 2011;102:7301–7306.
  • Min B, Kim JR, Oh SE, Regan JM, Logan BE. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 2005;39:4961–4968.
  • Mardanpour MM, Nasr Esfahany M, Behzad T, Sedaqatvand R. Single chamber microbial fuel cell with spiral anode for dairy waste water treatment. Biosens Bioelectron. 2012;38:264–269.
  • Venkata Mohan S, Mohanakrishna G, Velvizhi G, Lalit Babu V, Sarma PN. Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J. 2010;51:32–39.
  • Katuri KP, Enright A-M, O'Flaherty V, Leech D. Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater. Bioelectrochemistry. 2012;87:164–171.
  • Behera M, Jana PS, More TT, Ghangrekar MM. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochem. 2010;79:228–233.
  • Kaewkannetra P, Chiwes W, Chiu TY. Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel. 2011;90:2746–2750.
  • Zhang B, Zhao H, Zhou S, Shi C, Wang C, Ni J. A novel UASB–MFC–BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresour Technol. 2009;100:5687–5693.
  • Zhang F, Ahn Y, Logan BE. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations. Bioresour Technol. 2014;152:46–52.
  • Mshoperi E, Fogel R, Limson J. Application of carbon black and iron phthalocyanine composites inbioelectricity production at a brewery wastewater fed microbial fuel cell. Electrochim Acta. 2011;196:1103–1106.
  • Sciarria TP, Merlino G, Scaglia B, D'Epifanio A, Mecheri B, Borin S. Electricity generation using white and red wine lees in air cathode microbial fuel cells. J Power Sources. 2015;274:393–399.
  • Mohan SV, Mohanakrishna G, Reddy BP, Saravanan R, Sarma PN. Bioelectricity generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microenvironment. Biochem Eng J. 2008;39:121–130.
  • Raghavulu SV, Mohan SV, Reddy MV, Mohanakrishna G, Sarma PN. Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int J Hydrogen Energy. 2009;34:7547–7554.
  • Velvizhi G, Goud RK, Mohan SV. Anoxic bio-electrochemical system for treatment of complex chemical wastewater with simultaneous bioelectricity generation. Bioresour Technol. 2014;151:214–220.
  • Zhang L, Mao Y, Ma J, et al. Effect of the chemical oxidation demand to sulfide ratio on sulfide oxidation in microbial fuel cells treating sulfide-rich wastewater. Environ Technol. 2013;34:269–274.
  • Gálvez A, Greenman J, Ieropoulos I. Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresour Technol. 2009;100:5085–5091.
  • Greenman J, Gálvez A, Giusti L, Ieropoulos I. Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme Microb Technol. 2009;44:112–119.
  • Puig S, Serra M, Coma M, Cabré M, Balaguer MD, Colprim J. Microbial fuel cell application in landfill leachate treatment. J Hazard Mater. 2011;185:763–767.
  • Lee Y, Martin L, Grasel P, Tawfiq K, Chen G. Power generation and nitrogen removal of landfill leachate using microbial fuel cell technology. Environ Technol. 2013;34:2727–2736.
  • Ganesh K, Jambeck JR. Treatment of landfill leachate using microbial fuel cells: alternative anodes and semi-continuous operation. Bioresour Technol. 2013;139:383–387.
  • Rikame SS, Mungray AA, Mungray AK. Electricity generation from acidogenic food waste leachate using dual chamber mediator less microbial fuel cell. Int Biodeterior Biodegrad. 2012;75:131–137.
  • Hou B, Sun J, Hu Yy. Simultaneous congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes. Bioresour Technol. 2011;102:4433–4438.
  • Kumru M, Eren H, Catal T, Bermek H, Akarsubaşı AT. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells. Environ Technol. 2012;33:2167–2175.
  • Hassan SHA, El-Rab SMFG, Rahimnejad M, et al. Electricity generation from rice straw using a microbial fuel cell. Int J Hydrogen Energy. 2014;39:9490–9496.
  • Cai J, Zheng P, Zhang J, Xie Z, Li W, Sun P. Simultaneous anaerobic sulfide and nitrate removal coupled with electricity generation in microbial fuel cell. Bioresour Technol. 2013;129:224–228.
  • Sukkasem C, Laehlah S. An economical upflow bio-filter circuit (UBFC): a biocatalyst microbial fuel cell for sulfate-sulfide rich wastewater treatment. Environ Sci Water Res Technol. 2015;1:161–168.
  • Hong SW, Kim HS, Chung TH. Alteration of sediment organic matter in sediment microbial fuel cells. Environ Pollut. 2010;158:185–191.
  • Morris JM, Jin S, Crimi B, Pruden A. Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chem Eng J. 2009;146:161–167.
  • Morris JM, Jin S. Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J Hazard Mater. 2012;213–214:474–477.
  • Wei M, Harnisch F, Vogt C, Ahlheim J, Neu TR, Richnow HH. Harvesting electricity from benzene and ammonium-contaminated groundwater using a microbial fuel cell with an aerated cathode. RSC Adv. 2015;5:5321–5330.
  • Li J, Liu G, Zhang R, Luo Y, Zhang C, Li M. Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants. Bioresour Technol. 2010;101:4013–4020.
  • Huang L, Gan L, Zhao Q, Logan BE, Lu H, Chen G. Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell. Bioresour Technol. 2011;102:8762–8768.
  • Huang L, Gan L, Wang N, Quan X, Logan BE, Chen G. Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells. Biotechnol Bioeng. 2012;109:2211–2221.
  • Huang L, Chai X, Quan X, Logan BE, Chen G. Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresour Technol. 2012;111:167–174.
  • Jiang D, Li B. Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem Eng J. 2009;47:31–37.
  • Logan B. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol. 2010;85:1665–1671.
  • Zhu X, Logan BE. Copper anode corrosion affects power generation in microbial fuel cells. J Chem Technol Biotechnol. 2014;89:471–474.
  • Yuan H, He Z. Graphene-modified electrodes for enhancing the performance of microbial fuel cells. Nanoscale. 2015;7:7022–7029.
  • Logan BE, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol. 2007;41:3341–3346.
  • Feng Y, Yang Q, Wang X, Logan BE. Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. J Power Sources. 2010;195:1841–1844.
  • Zhang X, Cheng S, Liang P, Huang X, Logan BE. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes. Bioresour Technol. 2011;102:372–375.
  • Liu J, Zhang F, He W, Zhang X, Feng Y, Logan BE. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells. J Power Sources. 2014;261:278–284.
  • Saito T, Mehanna M, Wang X, et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresour Technol. 2011;102:395–398.
  • Zhang C, Liang P, Jiang Y, Huang X. Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode. J Power Sources. 2015;273:580–583.
  • Qiao Y, Li CM, Bao SJ, Bao QL. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources. 2007;170:79–84.
  • Ci S, Wen Z, Chen J, He Z. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochem Commun. 2012;14:71–74.
  • Zou Y, Xiang C, Yang L, Sun L-X, Xu F, Cao Z. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int J Hydrogen Energy. 2008;33:4856–4862.
  • Roh S-H, Woo H-G. Carbon nanotube composite electrode coated with polypyrrole for microbial fuel cell application. J Nanosci Nanotechnol. 2015;15:484–487.
  • Roh S-H. Electricity generation from microbial fuel cell with polypyrrole-coated carbon nanofiber composite. J Nanosci Nanotechnol. 2015;15:1700–1703.
  • Heijne At, Hamelers HVM, Saakes M, Buisman CJN. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim Acta. 2008;53:5697–5703.
  • Wu Y, Zhang X, Li S, Lv X, Cheng Y, Wang X. Microbial biofuel cell operating effectively through carbon nanotube blended with gold–titania nanocomposites modified electrode. Electrochim Acta. 2013;109:328–332.
  • Cui H-F, Du L, Guo P-B, Zhu B, Luong JHT. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources. 2015;283:46–53.
  • Oh SE, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol. 2004;38:4900–4904.
  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W. Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol. 2005;39:8077–8082.
  • He Z, Minteer SD, Angenent LT. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol. 2005;39:5262–5267.
  • Zhang X, Sun H, Liang P, Huang X, Chen X, Logan BE. Air-cathode structure optimization in separator-coupled microbial fuel cells. Biosens Bioelectron. 2011;30:267–271.
  • Liu H, Logan B. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol. 2004;38:4040–4046.
  • Luo Y, Zhang F, Wei B, Liu G, Zhang R, Logan BE. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. J Power Sources. 2011;196:9317–9321.
  • Venkata Mohan S, Saravanan R, Veer Raghavulu S, Mohanakrishna G, Sarma PN. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte. Bioresour Technol. 2008;99:596–603.
  • Liu H, Cheng S, Huang L, Logan BE. Scale-up of membrane-free single-chamber microbial fuel cells. J Power Sources. 2008;179:274–279.
  • Clauwaert P, Vanderha D, Boon N, et al. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol. 2007;41:7564–7569.
  • Santoro C, Lei Y, Li B, Cristiani P. Power generation from wastewater using single chamber microbial fuel cells (MFCs) with platinum-free cathodes and pre-colonized anodes. Biochem Eng J. 2012;62:8–16.
  • Tharamani CN, Kundu SB, Muhler M, Schuhmann W. Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochem Commun. 2010;12:338–341.
  • Ahn Y, Ivanov I, Nagaiah TC, Bordoloi A, Logan BE. Mesoporous nitrogen-rich carbon materials as cathode catalysts in microbial fuel cells. J Power Sources. 2014;269:212–215.
  • Zuo Y, Cheng S, Call D, Logan BE. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environ Sci Technol. 2007;41:3347–3353.
  • Guerrini E, Grattieri M, Faggianelli A, Cristiani P, Trasatti S. PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells. Bioelectrochemistry. 2015. 10.1016/j.bioelechem.2015.05.008
  • Zhang F, Cheng S, Pant D, Bogaert GV, Logan BE. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem Commun. 2009;11:2177–2179.
  • Zhang F, Pant D, Logan BE. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells. Biosens Bioelectron. 2011;30:49–55.
  • Chen G, Zhang F, Logan BE, Hickner MA. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells. Electrochem Commun. 2013;34:150–152.
  • Zhang X, Xia X, Ivanov I, Huang X, Logan BE. Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black. Environ Sci Technol. 2014;48:2075–2081.
  • Liu W, Cheng S, Sun D, Huang H, Chen J, Cen K. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer. Biosens Bioelectron. 2015;72:44–50.
  • Heijne At, Strike DPBTB, Hamelers HVM, Buisman CJN. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells. Environ Sci Technol. 2010;44:7151–7156.
  • Higgins SR, Lau C, Atanassov P, Minteer SD, Cooney MJ. Hybrid biofuel cell: microbial fuel cell with an enzymatic air-breathing cathode. ACS Catal. 2011;1:994–997.
  • Rhoads A, Beyenal H, Lewandowski A, Huber SJ, Onodera T, Pavlostathis SG. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol. 2009;43:8159–8165.
  • Tandukar M, Huber SJ, Onodera T, Pavlostathis S. Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol. 2009;43:8159–8165.
  • Huang L, Chai X, Chen G, Logan BE. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ Sci Technol. 2011;45:5025–5031.
  • Clauwaert P, Rabaey K, Aelterman P, et al. Biological denitrification in microbial fuel cells. Environ Sci Technol. 2007;41:3354–3360.
  • Aelterman P, Rabaey K, Pham TH, Boon N, Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol. 2006;40:3388–3394.
  • Zhang G, Zhao Q, Jiao Y, Wang K, Lee D-J, Ren N. Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. Water Res. 2012;46:43–52.
  • Rahimnejad M, Jafary T, Haghparast F, Najafpour GD, Ghoreyshi AA. Nafion as a nanoproton conductor in microbial fuel cells. Turk J Eng Env Sci. 2010;34:289–92.
  • Choi TH, Won Y-B, Lee J-W, et al. Electrochemical performance of microbial fuel cells based on disulfonated poly(arylene ether sulfone) membranes. J Power Sources. 2012;220:269–279.
  • Ghasemi M, Shahgaldi S, Ismail M, Yaakob Z, Daud WRW. New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems. Chem Eng J. 2012;184:82–89.
  • Lim SS, Daud WRW, Jahim JM, Ghasemi M, Chong PS, Ismail M. Sulfonated poly(ether ether ketone)/poly(ether sulfone) composite membranes as an alternative proton exchange membrane in microbial fuel cells. Int J Hydrogen Energy. 2012;37:11409–11424.
  • Rahimnejad M, Ghasemi M, Najafpour GD, et al. Synthesis, characterization and application studies of self-made Fe3O4/PES nanocomposite membranes in microbial fuel cell. Electrochim Acta. 2011;85:700–706.
  • Tao H-C, Sun X-N, Xiong Y. A novel hybrid anion exchange membrane for high performance microbial fuel cells. RSC Adv. 2015;5:4659–4663.
  • Ghangrekar MM, Shinde VB. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour Technol. 2007;98:2879–2885.
  • Zhang X, Liang P, Shi J, Wei J, Huang X. Using a glass fiber separator in a single-chamber air-cathode microbial fuel cell shortens start-up time and improves anode performance at ambient and mesophilic temperatures. Bioresour Technol. 2013;130:529–535.
  • Zhang X, Cheng S, Wang X, Huang X, Logan B. Separator characteristics for increasing performance of microbial fuel cells. Environ Sci Technol. 2009;43:8456–8461.
  • Ahn Y, Logan BE. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design. Appl Microbiol Biotechnol. 2012;93:2241–2248.
  • Sevda S, Dominguez-Benetton X, Vanbroekhoven K, Sreekrishnan TR, Pant D. Characterization and comparison of the performance of two different separator types in air–cathode microbial fuel cell treating synthetic wastewater. Chem Eng J. 2013;228:1–11.
  • Philamore H, Rossiter J, Walters P, Winfield J, Ieropoulos I. Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication. J Power Sources. 2015;289:91–99.
  • Liu H, Cheng S, Logan B. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol. 2005;39:5488–5493.
  • Liu H, Cheng S, Logan B. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol. 2005;39:5488–5493.
  • Lefebvre O, Tan Z, Kharkwal S, Ng HY. Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresour Technol. 2012;112:336–340.
  • Oh SE, Logan BE. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol. 2006;70:162–169.
  • He Z, Wagner N, Minteer SD, Angenent LT. An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol. 2006;40:5212–5217.
  • Kim MH, Iwuchukwu IJ, Wang Y, Shin D, Sanseverino J, Frymier P. An analysis of the performance of an anaerobic dual anode-chambered microbial fuel cell. J Power Sources. 2011;196:1909–1914.
  • Du Z, Li Q, Tong M, Li S, Li H. Electricity generation using membrane-less microbial fuel cell during wastewater treatment. Chin J Chem Eng. 2008;16:772–777.
  • Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol. 2004;38:2281–2285.
  • Ahn Y, Hatzell MC, Zhang F, Logan BE. Different electrode configurations to optimize performance of multielectrode microbial fuel cells for generating power or treating domestic wastewater. J Power Sources. 2014;249:440–445.
  • Wei B, Tokash JC, Zhang F, Kim Y, Logan BE. Electrochemical analysis of separators used in single-chamber, air-cathode microbial fuel cells. Electrochim Acta. 2013;89:45–51.
  • Zhang F, Xia X, Luo Y, Sun D, Call DF, Logan BE. Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells. Bioresour Technol. 2013. doi:10.1016/j.biortech.2013.01.036
  • Ahn Y, Logan BE. Altering anode thickness to improve power production in microbial fuel cells with different electrode distances. Energy Fuels. 2013;27:271–276.
  • Liao Q, Zhang J, Li J, Ye D, Zhu X, Zhang B. Increased performance of a tubular microbial fuel cell with a rotating carbon-brush anode. Biosens Bioelect. 2015;63:558–561.
  • Wang YP, Liu XW, Li WW, et al. A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment. Appl Energy. 2012;98:230–235.
  • Rahimnejad M, Ghoreyshi AA, Najafpour GD, Younesi H, Shakeri M. A novel microbial fuel cell stack for continuous production of clean energy. Int J Hydrogen Energy. 2012;37:5992–6000.
  • Tender LM, Gray SA, Groveman E, et al. The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources. 2008;179:571–575.
  • Jiang D, Curtis M, Troop E, et al. A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int J Hydrogen Energy. 2011;36:876–884.
  • Dong Y, Qu Y, He W, et al. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresour Technol. 2015. doi:10.1016/j.biortech.2015.06.026
  • Huang L, Cheng S, Rezaei F, Logan BE. Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells. Environ Technol. 2009;30:499–504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.