512
Views
16
CrossRef citations to date
0
Altmetric
Articles

Photocatalytic degradation of cephalexin by g-C3N4/Zn doped Fe3O4 under visible light

, , &
Pages 1292-1301 | Received 09 Apr 2019, Accepted 02 Sep 2019, Published online: 18 Sep 2019
 

ABSTRACT

In this work, we reported synthesis of a novel magnetically separable g-C3N4/Zn doped Fe3O4 composite (g-CN/ZnFe) by a simple polyol thermal method. The characteristics of the as-prepared composite was checked by XRD, SEM, TEM, XPS, PL technologies. The optimized weight ratio of g-C3N4 and Zn doped Fe3O4 was investigated. In addition, the photocatalytic activities of the composite products were checked by degradation of Cephalexin (CEX) under visible light. The results showed that g-CN/ZnFe composite with an added 20% g-C3N4 exhibited the highest photocatalytic activity for cephalexin under visible light irradiation. The improved photocatalytic activity of 20% g-CN/ZnFe can be ascribed to the low combination rate of photoinduced electron/hole pairs. Especially, g-CN/ZnFe can be recovered easily by using an external magnetic field and has the high stability after six runs. These properties of the g-CN/ZnFe as-prepared composite could be a promising photocatalyst for the degradation of pharmaceutical contaminants.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.