512
Views
16
CrossRef citations to date
0
Altmetric
Articles

Photocatalytic degradation of cephalexin by g-C3N4/Zn doped Fe3O4 under visible light

, , &
Pages 1292-1301 | Received 09 Apr 2019, Accepted 02 Sep 2019, Published online: 18 Sep 2019

References

  • Nassar MY, Ahmed IS, Hendy HS. A facile one-pot hydrothermal synthesis of hematite (α-Fe2O3) nanostructures and cephalexin antibiotic sorptive removal from polluted aqueous media. J Mol Liq. 2018;271:844–856. doi: 10.1016/j.molliq.2018.09.057
  • Kochaporn Chullasat PK, Opas B. Nanocomposite optosensor of dual quantum dot fluorescence probes for simultaneous detection of cephalexin and ceftriaxone. Sens Actuators B. 2019;281:689–697. doi: 10.1016/j.snb.2018.11.003
  • Mohseni-Bandpi A, Al-Musawi TJ, Ghahramani E, et al. Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J Mol Liq. 2016;218:615–624. doi: 10.1016/j.molliq.2016.02.092
  • Serna-Galvis EA, Montoya-Rodriguez D, Isaza-Pineda L, et al. Sonochemical degradation of antibiotics from representative classes-considerations on structural effects, initial transformation products, antimicrobial activity and matrix. Ultrason Sonochem. 2019;50:157–165. doi: 10.1016/j.ultsonch.2018.09.012
  • Hao Z, Vilt ME, Wang Z, et al. Supported liquid membranes with feed dispersion for recovery of cephalexin. J Memb Sci. 2014;468:423–431. doi: 10.1016/j.memsci.2014.06.009
  • Bansal P, Verma A. Synergistic effect of dual process (photocatalysis and photo-Fenton) for the degradation of cephalexin using TiO2 immobilized novel clay beads with waste fly ash/foundry sand. J Photochem Photobiol A. 2017;342:131–142. doi: 10.1016/j.jphotochem.2017.04.010
  • Zanella R, Ramírez-Zamora RM, Castillón-Barraza F, et al. Enhanced photocatalytic degradation of sulfamethoxazole by deposition of Au, Ag and Cu metallic nanoparticles on TiO2. Environ Technol. 2018;39:2353–2364. doi: 10.1080/09593330.2017.1354926
  • Domingues FS, Freitas TKFS, de Almeida CA, et al. Hydrogen peroxide-assisted photocatalytic degradation of textile wastewater using titanium dioxide and zinc oxide. Environ Technol Innov. 2019;40:1223–1232. doi: 10.1080/09593330.2017.1418913
  • Yu X, Kou S, Zhang J, et al. Preparation and characterization of Cu2O nano-particles and their photocatalytic degradation of fluroxypyr. Environ Technol. 2018;39:2967–2976. doi: 10.1080/09593330.2017.1370023
  • Dong X, Cheng F. Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J Mater Chem A. 2015;3:23642–23652. doi: 10.1039/C5TA07374J
  • Wen J, Xie J, Chen X, et al. A review on g-C3N4-based photocatalysts. Appl Surf Sci. 2017;316:72–123. doi: 10.1016/j.apsusc.2016.07.030
  • Wang X, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2012;2:1596–1606. doi: 10.1021/cs300240x
  • Cui Y, Zhang G, Lin Z, et al. Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation. Appl Catal B. 2016;181:413–419. doi: 10.1016/j.apcatb.2015.08.018
  • Kiskan B, Zhang J, Wang X, et al. Mesoporous graphitic carbon nitride as a heterogeneous visible light photoinitiator for radical polymerization. ACS Macro Lett. 2012;1:546–549. doi: 10.1021/mz300116w
  • Zhao Z, Sun Y, Dong F. Graphitic carbon nitride based nanocomposites: a review. Nanoscale. 2015;7:15–37. doi: 10.1039/C4NR03008G
  • Ma X, Lv Y, Xu J, et al. A strategy of enhancing the photoactivity of g-C3N4via doping of nonmetal elements: a first-principles study. The J Phys Chem C. 2012;116:23485–23493. doi: 10.1021/jp308334x
  • Yuan J, Wen J, Zhong Y, et al. Enhanced photocatalytic H2evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C3N4heterojunctions. J Mater Chem A. 2015;3:18244–18255. doi: 10.1039/C5TA04573H
  • Fu Y, Huang T, Zhang L, et al. Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. Nanoscale. 2015;7:13723–13733. doi: 10.1039/C5NR03260A
  • Kofuji Y, Isobe Y, Shiraishi Y, et al. Carbon nitride–aromatic diimide–graphene nanohybrids: metal-Free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J Am Chem Soc. 2016;138:10019–10025. doi: 10.1021/jacs.6b05806
  • Ye S, Qiu L-G, Yuan Y-P, et al. Facile fabrication of magnetically separable graphitic carbon nitride photocatalysts with enhanced photocatalytic activity under visible light. J Mater Chem A. 2013;1:3008–3015. doi: 10.1039/c2ta01069k
  • Zhou X, Jin B, Chen R, et al. Synthesis of porous Fe3O4/g-C3N4 nanospheres as highly efficient and recyclable photocatalysts. Mater Res Bull. 2013;48:1447–1452. doi: 10.1016/j.materresbull.2012.12.038
  • Tang D, Gaoke Z. Fabrication of AgFeO2/g-C3N4 nanocatalyst with enhanced and stable photocatalytic performance. Appl Surf Sci. 2017;391:414–422.
  • Nguyen XS, Zhang G, Yang X. Mesocrystalline Zn-doped Fe3O4 hollow submicrospheres: formation mechanism and enhanced photo-fenton catalytic performance. ACS Appl Mater Interfaces. 2017;9:8900–8909. doi: 10.1021/acsami.6b16839
  • Yang J, Chen H, Gao J, et al. Synthesis of Fe3O4/g-C3N4 nanocomposites and their application in the photodegradation of 2,4,6-trichlorophenol under visible light. Mater Lett. 2016;164:183–189. doi: 10.1016/j.matlet.2015.10.130
  • Ma J, Yang Q, Wen Y, et al. Fe-g-C3N4/graphitized mesoporous carbon composite as an effective fenton-like catalyst in a wide pH range. Appl Catal B. 2017;201:232–240. doi: 10.1016/j.apcatb.2016.08.048
  • Yao Y, Cai Y, Lu F, et al. Magnetic ZnFe2O4–C3N4Hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Ind Eng Chem Res. 2014;53:17294–17302. doi: 10.1021/ie503437z
  • Li D, Wu Z, Xing C, et al. Novel Zn0.8Cd0.2S/g-C3N4 heterojunctions with superior visible-light photocatalytic activity: hydrothermal synthesis and mechanism study. J Mol Catal A Chem. 2014;395:261–268. doi: 10.1016/j.molcata.2014.08.036
  • He Y, Zhang L, Teng B, et al. New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ Sci Technol. 2015;49:649–656. doi: 10.1021/es5046309
  • Yao Y, Lu F, Zhu Y, et al. Magnetic core-shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II. J Hazard Mater. 2015;297:224–233. doi: 10.1016/j.jhazmat.2015.04.046
  • Akhundi A, Habibi-Yangjeh A. Novel magnetically separable g-C3N4/AgBr/Fe3O4 nanocomposites as visible-light-driven photocatalysts with highly enhanced activities. Ceram Int. 2015;41:5634–5643. doi: 10.1016/j.ceramint.2014.12.145
  • Sharma R, Bansal S, Singhal S. Tailoring the photo-fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure. RSC Adv. 2015;5:6006–6018. doi: 10.1039/C4RA13692F
  • Feng Z, Zeng L, Chen Y, et al. In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J Mater Res. 2017;32:3660–3668. doi: 10.1557/jmr.2017.271
  • Jiaqi Wan JT, Chongyu Z, Ruiting Y, et al. Insight into the formation of magnetite mesocrystals from ferrous precursors in ethylene glycol. Chem Commun. 2015;51:15910–159103. doi: 10.1039/C5CC03685B
  • Wang X, Mao W, Zhang J, et al. Facile fabrication of highly efficient g-C3N4/BiFeO3 nanocomposites with enhanced visible light photocatalytic activities. J Colloid Interface Sci. 2015;448:17–23. doi: 10.1016/j.jcis.2015.01.090
  • Ahooie TS, Azizi N, Yavari I, et al. Magnetically separable and recyclable g-C3N4 nanocomposite catalyzed one-pot synthesis of substituted imidazoles. J Iran Chem Soc. 2018;15:855–862. doi: 10.1007/s13738-017-1284-9
  • Vignesh K, Suganthi A, Min B-K, et al. Photocatalytic activity of magnetically recoverable MnFe2O4/g-C3N4/TiO2 nanocomposite under simulated solar light irradiation. J Mol Catal A Chem. 2014;395:373–383. doi: 10.1016/j.molcata.2014.08.040
  • Nguyen HP, Gyawali G, Jo YH, et al. Effect of heat treatment on ultrasonic synthesized bismuth ferrites: an effective visible light-driven photocatalyst. Res Chem Intermed. 2017;43:5113–5122. doi: 10.1007/s11164-017-3047-8
  • Masjedi-Arani M, Salavati-Niasari M. Cd2SiO4/graphene nanocomposite: ultrasonic assisted synthesis, characterization and electrochemical hydrogen storage application. Ultrason Sonochem. 2018;43:136–145. doi: 10.1016/j.ultsonch.2018.01.009
  • Ma FX, Hu H, Wu HB, et al. Formation of uniform Fe3 O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv Mater. 2015;27:4097–4101. doi: 10.1002/adma.201501130
  • Sorescu M, Diamandescu L, Tarabasanu-Mihaila D, et al. Sequence of phases in the hydrothermal synthesis of zinc-doped magnetite system. Mater Chem Phys. 2007;106:273–278. doi: 10.1016/j.matchemphys.2007.06.001
  • Yao Y, Qin J, Cai Y, et al. Facile synthesis of magnetic ZnFe2O4-reduced graphene oxide hybrid and its photo-fenton-like behavior under visible iradiation. Environ Sci Pollut Res Int. 2014;21:7296–7306. doi: 10.1007/s11356-014-2645-x
  • Dong F, Zhao Z, Xiong T, et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl Mater Interfaces. 2013;5:11392–11401. doi: 10.1021/am403653a
  • Mousavi M, Habibi-Yangjeh A. Ternary g-C3N4/Fe3O4/Ag3VO4 nanocomposites: novel magnetically separable visible-light-driven photocatalysts for efficiently degradation of dye pollutants. Mater Chem Phys. 2015;163:421–430. doi: 10.1016/j.matchemphys.2015.07.061
  • Deng Y, Tang L, Zeng G, et al. Facile fabrication of a direct Z-scheme Ag2CrO4/g-C3N4 photocatalyst with enhanced visible light photocatalytic activity. J Mol Catal A Chem. 2016;421:209–221. doi: 10.1016/j.molcata.2016.05.024
  • Boonprakob N, Wetchakun N, Phanichphant S, et al. Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. J Colloid Interface Sci. 2014;417:402–409. doi: 10.1016/j.jcis.2013.11.072
  • Lü X, Shen J, Fan D, et al. Solvothermal engineering of bismuth molybdate with C3N4 nanosheets, and enhanced photocatalytic activity. Res Chem Intermed. 2015;41:9629–9642. doi: 10.1007/s11164-015-1953-1
  • Zhang Z, Jiang D, Li D, et al. Construction of SnNb2O6 nanosheet/g-C3N4 nanosheet two-dimensional heterostructures with improved photocatalytic activity: synergistic effect and mechanism insight. Appl Catal B. 2016;183:113–123. doi: 10.1016/j.apcatb.2015.10.022
  • Cai C, Zhang Z, Liu J, et al. Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange II in water. Appl Catal B. 2016;182:456–468. doi: 10.1016/j.apcatb.2015.09.056
  • Ibrahim I, Ali IO, Salama TM, et al. Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M = Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: high catalytic performances for nitroarenes reduction. Appl Catal B. 2016;181:389–402. doi: 10.1016/j.apcatb.2015.08.005
  • He Y, Zhang L, Fan M, et al. Z-scheme SnO2−x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol Energy Mater Sol Cells. 2015;137:175–184. doi: 10.1016/j.solmat.2015.01.037
  • Huang S, Xu Y, Xie M, et al. Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf A. 2015;478:71–80. doi: 10.1016/j.colsurfa.2015.03.035
  • Torki F, Faghihian H. Photocatalytic activity of NiS, NiO and coupled NiS–NiO for degradation of pharmaceutical pollutant cephalexin under visible light. RSC Adv. 2017;7:54651–55461. doi: 10.1039/C7RA09461B
  • Guo HWW, Shi Y, Zhang G. Sonochemical degradation of the antibiotic cephalexin in aqueous solution. Water SA. 2010;36:651–654. doi: 10.4314/wsa.v36i5.61998

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.