279
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Influence of the dental implant macrogeometry and threads design on primary stability: an in vitro simulation on artificial bone blocks

, , , , &
Pages 1242-1250 | Received 12 Sep 2020, Accepted 09 Jan 2021, Published online: 25 Jan 2021
 

Abstract

The implant macrogeometry and thread profile represent one of the most important factors for a successful achievement of primary stability during the positioning procedure. The aim of the present investigation was to evaluate the insertion torque (IT), removal torque (RT) and Implant stability Quotient (ISQ) of two different implant macrogeometry and thread profile on solid rigid polyurethane model. Two different implants macrogeometries were tested: K2 (Group I) with 11° angle, 1.17 mm pitch and self-cutting V thread profile and K3 (Group II) implants with 30° angle, 0.71 mm pitch and spyral thread profile. A total of 120 specimens (n = 60 for each group) were positioned into different conditions of solid rigid polyurethane blocks. The insertion torque (IT), removal torque (RT) and ISQ were measured for each specimen. All specimens achieved the positioning into solid rigid polyurethane blocks for both of groups with no loss of stability. A significantly higher IT, RT and ISQ were detected in Group II (p < 0.05). In both groups the mean values for IT, RT and ISQ appeared promising from a clinical point of view. In spite of different macrogeometry and thread profile, both implant types achieved high primary stability on solid rigid polyurethane block to support the functional loading for a clinical application.

Acknowledgment

The authors declare no conflict of interest for the present research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.