313
Views
1
CrossRef citations to date
0
Altmetric
Articles

A simple and effective 1D-element discrete-based method for computational bone remodeling

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 176-192 | Received 01 Feb 2021, Accepted 11 Jun 2021, Published online: 30 Jun 2021
 

Abstract

In-silico models applied to bone remodeling are widely used to investigate bone mechanics, bone diseases, bone-implant interactions, and also the effect of treatments of bone pathologies. This article proposes a new methodology to solve the bone remodeling problem using one-dimensional (1D) elements to discretize trabecular structures more efficiently for 2D and 3D domains. An Euler integration scheme is coupled with the momentum equations to obtain the evolution of material density at each step. For the simulations, the equations were solved by using the finite element method, and two benchmark tests were solved varying mesh parameters. Proximal femur and calcaneus bone were selected as study cases given the vast research available on the topology of these bones, and compared with the anatomical features of trabecular bone reported in the literature. The presented methodology has proven to be efficient in optimizing topologies of lattice structures; It can predict the trend of formation patterns of the main trabecular groups from two different cancellous bones (femur and calcaneus) using domains set up by discrete elements as a starting point. Preliminary results confirm that the proposed approach is suitable and useful in bone remodeling problems leading to a considerable computational cost reduction. Characteristics similar to those encountered in topological optimization algorithms were identified in the benchmark tests as well, showing the viability of the proposed approach in other applications such as bio-inspired design.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.