Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Volume 23, 2020 - Issue 9
132
Views
1
CrossRef citations to date
0
Altmetric
Articles

Acquisition and expression of sucrose conditioned flavor preferences following dopamine D1, opioid and NMDA receptor antagonism in C57BL/6 mice

ORCID Icon, , ORCID Icon, , , ORCID Icon, , & ORCID Icon show all
 

Abstract

The study of inbred mouse strains is a useful animal model to assess differences in ingestive behavior responses, including conditioned flavor preferences (CFP). C57BL/6, BALB/c and SWR inbred mice display differential sensitivity to dopamine (DA) D1, opioid and muscarinic cholinergic receptor antagonism of sucrose or saccharin intake as well as to muscarinic cholinergic antagonism of acquisition (learning) of sucrose-CFP. Given that DA D1, opioid and N-methyl-D-aspartate (NMDA) receptor antagonists differentially alter sucrose-CFP in BALB/c and SWR inbred mice, the present study examined whether systemic administration of naltrexone, SCH23390 or MK-801 altered acquisition and expression of sucrose-CFP in C57BL/6 mice. In acquisition experiments, male food-restricted C57BL/6 mice were treated with vehicle, naltrexone (1, 5 mg/kg), SCH23390 (50, 200 nmol/kg) or MK-801 (100, 200 µg/kg) 30 min prior to each of ten daily sessions in which they alternately consumed a flavored (CS+, e.g. cherry) 16% sucrose solution and a differently-flavored (CS-, e.g. grape) 0.05% saccharin solution followed by six two-bottle CS choice tests mixed in 0.2% saccharin without injections. SCH23390 and MK-801, but not naltrexone eliminated sucrose-CFP acquisition in food-restricted C57BL/6 mice. In expression experiments, food-restricted C57BL/6 mice underwent the ten training sessions without injections followed by two-bottle CS choice tests 30 min following vehicle, naltrexone (1, 5 mg/kg), SCH23390 (200, 800 nmol/kg) or MK-801 (100, 200 µg/kg). SCH23390 more effectively reduced the magnitude of sucrose-CFP expression than naltrexone or MK-801 in food-restricted C57BL/6 mice. Thus, dopamine D1 and NMDA receptor signaling is essential for learning of sucrose-CFP in C57BL/6 mice.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.