379
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Extreme Pressure Lubricant Additives Interacting on the Surface of Steel- and Tungsten Carbide–Doped Diamond-Like Carbon

, , &
Pages 623-629 | Received 27 Jun 2012, Accepted 26 Jan 2013, Published online: 16 May 2013
 

Abstract

Certain diamond-like carbon (DLC) coatings offer excellent tribological properties under both dry and oil-lubricated sliding conditions. However, the underlying mechanisms under lubricated conditions are generally not fully understood, especially when performance depends on strong tribochemical interactions with lubricant additives. The aim of the present work is to explore the friction and wear performance of steel and tungsten carbide (WC)-doped DLC (WC-DLC) surfaces in the presence of different types of extreme pressure (EP) and nitrogen–sulfur-based (NS) additives. Tribological tests were performed on a ball-on-disc test rig, and X-ray photoelectron spectroscopy (XPS) was used for physical and chemical characterization of the tribofilms. It was observed that EP and NS additives significantly reduced the wear of WC-DLC surfaces in comparison with tests conducted on steel surfaces. XPS indicated that the additive interactions on the WC-DLC surface formed a distinctive tribofilm that promoted better friction and wear performance. The higher concentration of carbon compounds and lower concentration of oxygen compounds in the tribofilm significantly improved friction and wear characteristics.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.