342
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Al-Cr-Fe Quasicrystal Content on Tribological Properties of Cold-Sprayed Titanium Composite Coatings

, , &
Pages 616-624 | Received 25 Jun 2014, Accepted 20 Nov 2014, Published online: 01 May 2015
 

Abstract

Titanium (Ti) composite coatings were prepared on commercially available Ti substrates via a cold-spray process. Quasicrystalline Al-Cr-Fe particles were incorporated in the cold-sprayed Ti matrices at different contents to form a new type of wear-resistant Ti composite coating. The tribological properties of the Ti composite coatings were systematically investigated using steel ball-on-disc microtribological testing. The incorporation of 10 wt% Al-Cr-Fe particles gave rise to the higher wear resistance of the Ti composite coating than that of the Ti coating due to the higher wear resistance of the Al-Cr-Fe particles than that of the Ti matrix. As a result, an increase in the Al-Cr-Fe particle content to 20 wt% increased the wear resistance of the Ti composite coating. However, the wear resistance of the Ti composite coating decreased with a further increase in the Al-Cr-Fe particle content to 30 wt% due to the significantly increased volume of micropores in the composite coating. It could be concluded that the Ti composite coating with 20 wt% Al-Cr-Fe particles had the highest wear resistance among the cold-sprayed coatings used in this study.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.