350
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Sintering Temperature and Atmosphere on Nonlubricated Sliding Wear of Nano-Yttria-Dispersed and Yttria-Free Duplex and Ferritic Stainless Steel Fabricated by Powder Metallurgy

&
Pages 324-336 | Received 16 Mar 2015, Accepted 14 Mar 2016, Published online: 03 Aug 2016
 

ABSTRACT

The nonlubricated sliding wear behavior of nano-yttria-dispersed and yttria-free duplex and ferritic stainless steel against a diamond tip was studied. The stainless steel samples were fabricated by a conventional powder metallurgy route in which nano-yttria-dispersed and yttria-free duplex and ferritic stainless steel powders were cold compacted and then conventionally sintered at either 1000, 1200, or 1400°C in an argon atmosphere. For comparison, another set of samples was sintered at 1000°C in a nitrogen atmosphere. The wear behavior of sintered stainless steel samples against a diamond indenter was investigated using a pin-on-disc apparatus at 10 and 20 N loads and at a constant speed of 0.0041 m/s. It is proposed that yttria-dispersed stainless steels showed higher wear resistance compared to yttria-free stainless steel due to their improved hardness and density. Stainless steel sintered in a nitrogen atmosphere exhibited better wear resistance than those sintered in an argon atmosphere due to the formation of hard and brittle Cr2N. The wear mechanisms of stainless steels against diamond were found to be mainly abrasive and oxidative. Semiquantitative analysis of the worn surfaces and wear debris confirmed the occurrence of oxidation processes during wear.

Acknowledgement

The authors are grateful to Professor A. Basu, NIT Rourkela, for providing the wear testing facility.

Funding

Financial support for this work from the Council of Scientific & Industrial Research (CSIR), India (Grant No. 22/561/11/EMR II, dated 11/4/2011), is gratefully acknowledged.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.