Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 11
906
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of Lewis number dependence of scalar dissipation rate transport for Large Eddy Simulations of turbulent premixed combustion

&
Pages 1201-1222 | Received 07 Sep 2015, Accepted 15 Oct 2015, Published online: 02 May 2016
 

ABSTRACT

The influences of differential diffusion of heat and mass on the Favre-filtered scalar dissipation rate (SDR) transport have been analyzed and modeled using a priori analysis of Direct Numerical Simulations (DNS) data of freely propagating statistically planar turbulent premixed flames with different values of global Lewis number, Le. The DNS data has been explicitly filtered using a Gaussian filter to obtain the unclosed terms of the Favre-filtered SDR transport equation, arising from turbulent transport (T1), density variation due to heat release (T2), strain rate contribution due to the alignment of scalar and velocity gradients (T3), correlation between the gradients of reaction rate and reaction progress variable (T4), molecular dissipation of SDR (−D2), and diffusivity gradients f(D). The statistical behaviors of these terms and their scaling estimates reported in a recent analysis have been utilized here to propose models for these unclosed terms in the context of Large Eddy Simulations (LES) and the performances of these models have been assessed using the values obtained from explicitly filtered DNS data. These newly proposed models are found to satisfactorily predict both the qualitative and quantitative behaviors of these unclosed terms for a range of filter widths Δ for all Le cases considered here.

Nomenclature

c=

reaction progress variable

cm=

thermo-chemical parameter

CP=

specific heat at constant pressure

CV=

specific heat at constant volume

CF=

model parameter

C3, C4=

model parameters

D=

progress variable diffusivity

Dt=

eddy diffusivity

Da=

Damköhler number

D1=

molecular diffusion term

D2=

molecular dissipation term

fb=

burning mode probability density function

=

model parameters

f(D)=

term due to diffusivity gradient

ksgs=

sub-grid scale kinetic energy

=

thermo-chemical parameter

Ka=

Karlovitz number

Le=

Lewis number

l=

integral length scale

Ma=

Mach number

Mi=

ith component of resolved flame normal

Nc=

scalar dissipation rate

Ni=

ith component of flame normal

p=

model parameter

Pr=

Prandtl number

Q=

general quantity

Ret=

turbulent Reynolds number

ReΔ=

sub-grid Reynolds number

=

unstrained laminar burning velocity

t=

time

tc=

chemical time scale

tf=

initial turbulent eddy turnover time

tsim=

simulation time

T=

instantaneous dimensional temperature

T+=

non-dimensional temperature

Tad=

adiabatic flame temperature

T0=

reactant temperature

T1, T2, T3, T4=

terms in the transport equation of Favre-filtered scalar dissipation rate

ui=

ith component of nondimensional fluid velocity

u=

root mean square fluctuation of velocity

uΔ=

sub-grid velocity fluctuation

=

chemical reaction rate

xi=

ith Cartesian coordinate

YR=

reactant mass fraction

YR0=

reactant mass fraction in unburned gas

YR=

reactant mass fraction in burned gas

αT=

thermal diffusivity

αT0=

thermal diffusivity of the unburned gas

β=

Zel’dovich number

β3, β3=

model parameters

γ=

ratio of specific heats (=CP/CV)

γ1, γ2=

model parameter

δth=

thermal flame thickness

δz=

Zel'dovich flame thickness

Δ=

filter width

Γ=

model parameter

μ=

viscosity

μ0=

viscosity of unburned gas

ρ=

density

ρ0=

unburned gas density

τ=

heat release parameter

τij=

viscous stress tensor

Φ′=

model parameter

=

LES-filtered value of a general quantity q

=

Favre-filtered value of a general quantity q

Subscripts=
0=

unburned gas value

=

burned gas value

res=

resolved scale value

sg=

sub-grid scale value

Acronyms=
DNS=

direct numerical simulation

LES=

large eddy simulation

pdf=

probability density function

SDR=

scalar dissipation rate

Nomenclature

c=

reaction progress variable

cm=

thermo-chemical parameter

CP=

specific heat at constant pressure

CV=

specific heat at constant volume

CF=

model parameter

C3, C4=

model parameters

D=

progress variable diffusivity

Dt=

eddy diffusivity

Da=

Damköhler number

D1=

molecular diffusion term

D2=

molecular dissipation term

fb=

burning mode probability density function

=

model parameters

f(D)=

term due to diffusivity gradient

ksgs=

sub-grid scale kinetic energy

=

thermo-chemical parameter

Ka=

Karlovitz number

Le=

Lewis number

l=

integral length scale

Ma=

Mach number

Mi=

ith component of resolved flame normal

Nc=

scalar dissipation rate

Ni=

ith component of flame normal

p=

model parameter

Pr=

Prandtl number

Q=

general quantity

Ret=

turbulent Reynolds number

ReΔ=

sub-grid Reynolds number

=

unstrained laminar burning velocity

t=

time

tc=

chemical time scale

tf=

initial turbulent eddy turnover time

tsim=

simulation time

T=

instantaneous dimensional temperature

T+=

non-dimensional temperature

Tad=

adiabatic flame temperature

T0=

reactant temperature

T1, T2, T3, T4=

terms in the transport equation of Favre-filtered scalar dissipation rate

ui=

ith component of nondimensional fluid velocity

u=

root mean square fluctuation of velocity

uΔ=

sub-grid velocity fluctuation

=

chemical reaction rate

xi=

ith Cartesian coordinate

YR=

reactant mass fraction

YR0=

reactant mass fraction in unburned gas

YR=

reactant mass fraction in burned gas

αT=

thermal diffusivity

αT0=

thermal diffusivity of the unburned gas

β=

Zel’dovich number

β3, β3=

model parameters

γ=

ratio of specific heats (=CP/CV)

γ1, γ2=

model parameter

δth=

thermal flame thickness

δz=

Zel'dovich flame thickness

Δ=

filter width

Γ=

model parameter

μ=

viscosity

μ0=

viscosity of unburned gas

ρ=

density

ρ0=

unburned gas density

τ=

heat release parameter

τij=

viscous stress tensor

Φ′=

model parameter

=

LES-filtered value of a general quantity q

=

Favre-filtered value of a general quantity q

Subscripts=
0=

unburned gas value

=

burned gas value

res=

resolved scale value

sg=

sub-grid scale value

Acronyms=
DNS=

direct numerical simulation

LES=

large eddy simulation

pdf=

probability density function

SDR=

scalar dissipation rate