Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 69, 2016 - Issue 11
906
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of Lewis number dependence of scalar dissipation rate transport for Large Eddy Simulations of turbulent premixed combustion

&
Pages 1201-1222 | Received 07 Sep 2015, Accepted 15 Oct 2015, Published online: 02 May 2016

References

  • Y. Huang and V. Yang, Dynamics and Stability of Lean-Premixed Swirl Stabilised Combustion, Prog. Energy Combust. Sci., vol. 35, no. 4, pp. 293–364, 2009.
  • T. Wallner, H. K. Ng, and R. W. Peters, The Effects of Blending Hydrogen with Methane on Energy Operation, Efficiency and Emissions, Proc. SAE Trans., 2007–01-0474, 2007.
  • R. Schefer, Reduced Turbine Emissions Using Hydrogen-Enriched Fuels, Proc. of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610–32405, 2002.
  • M. Mizomoto, S. Asaka, S. Ikai, and C. K. Law, Effects of Preferential Diffusion on the Burning Intensity of Curved Flames, Proc. Combust. Inst., vol. 20, pp. 1933–1939, 1984.
  • C. K. Law and O. C. Kwon, Effects of Hydrocarbon Substitution on Atmospheric Hydrogen–Air Flame Propagation, Int. J. Hydrogen Energy, vol. 29, pp. 867–879, 2004.
  • F. Dinkelacker, B. Manickam, and S. R. Mupppala, Modelling and Simulation of Lean Premixed Turbulent Methane/Hydrogen/Air Flames with an Effective Lewis Number Approach, Combust. Flame, vol. 158, pp. 1742–1749, 2011.
  • P. Pelce and P. Clavin, Influence of Hydrodynamics and Diffusion Upon the Stability Limits of Laminar Premixed Flames, J. Fluid Mech., vol. 124, pp. 219–237, 1982.
  • P. Clavin and F. A. Williams, Effects of Molecular Diffusion and Thermal Expansion on the Structure and Dynamics of Turbulent Premixed Flames in Turbulent Flows of Large Scale and Small Intensity, J. Fluid Mech., vol. 128, pp. 251–282, 1982.
  • P. A. Libby, A. Linan, and F. A. Williams, Strained Premixed Laminar Flames with Non-Unity Lewis Numbers, Combust. Sci. Technol., vol. 34, pp. 257–293, 1983.
  • G. I. Sivashinsky, Instabilities, Pattern Formation and Turbulence in Flames, Annu. Rev. Fluid Mech., vol. 15, pp. 179–190, 1983.
  • R. G. Abdel-Gayed, D. Bradley, M. Hamid, and M. Lawes, Lewis Number Effects on Turbulent Burning Velocity, Proc. Combust. Inst., vol. 20, pp. 505–512, 1984.
  • W. T. Ashurst, N. Peters, and M. D. Smooke, Numerical Simulation of Turbulent Flame Structure with Non-Unity Lewis Number, Combust. Sci. Technol., vol. 53, pp. 339–375, 1987.
  • D. Haworth and T. J. Poinsot, Numerical Simulations of Lewis Number Effects in Turbulent Premixed Flames, J. Fluid Mech., vol. 244, pp. 405–436, 1992.
  • C. J. Rutland and A. Trouvé, Direct Simulations of Premixed Turbulent Flames with Nonunity Lewis Numbers, Combust. Flame, vol. 94, pp. 41–57, 1993.
  • A. Trouvé and T. J. Poinsot, The Evolution Equation for Flame Surface Density in Turbulent Premixed Combustion, J. Fluid Mech., vol. 278, pp. 1–31, 1994.
  • N. Chakraborty, and R. S. Cant, Influence of Lewis Number on Curvature Effects in Turbulent Premixed Flame Propagation in the Thin Reaction Zones Regime, Phys. Fluids, vol. 17, 105105, 2005.
  • J. Yuan, Y. Ju, and C. K. Law, Coupled Hydrodynamic, and Diffusional Thermal Instabilities in Flame Propagation at Small Lewis Numbers, Phys. Fluids, vol. 17, 074106, 2005.
  • N. Chakraborty and M. Klein, A Priori Direct Numerical Simulation Assessment of Algebraic Flame Surface Density Models for Turbulent Premixed Flames in the Context of Large Eddy Simulation. Phys. Fluids, vol. 20, 085108, 2008.
  • I. Han and K. H. Huh, Roles of Displacement Speed on Evolution of Flame Surface Density for Different Turbulent Intensities and Lewis Numbers in Turbulent Premixed Combustion, Combust. Flame, vol. 152, pp. 194–205, 2008.
  • N. Chakraborty, and R. S. Cant, Effects of Lewis Number on Scalar Transport in Turbulent Premixed Flames, Phys. Fluids, vol. 21, 035110, 2009.
  • N. Chakraborty, M. Klein, and N. Swaminathan, Effects of Lewis Number on Reactive Scalar Gradient Alignment with Local Strain Rate in Turbulent Premixed Flames, Proc. Combust. Inst., vol. 32, pp. 1409–1417, 2009.
  • N. Chakraborty and N. Swaminathan, Effects of Lewis Number on Scalar Dissipation Transport and Its Modelling Implications for Turbulent Premixed Combustion, Combust. Sci. Technol., vol. 182, pp. 1201–1240, 2010.
  • N. Chakraborty and R. S. Cant, Effects of Lewis Number on Flame Surface Density Transport in Turbulent Premixed Combustion, Combust. Flame, vol. 158, pp. 1768–1787, 2011.
  • N. Chakraborty, M. Katragadda, and R. S. Cant, Effects of Lewis Number on Turbulent Kinetic Energy Transport in Turbulent Premixed Combustion, Phys. Fluids, vol. 23, 075109, 2011.
  • N. Chakraborty, and N. Swaminathan, Effects of Lewis Number on Scalar Variance Transport in Turbulent Premixed Flames, Flow, Turb. Combust., vol. 87, nos. 2–3, pp. 261–292, 2011.
  • N. Chakraborty, and A. N. Lipatnikov, Effects of Lewis Number on the Statistics of Conditional Fluid Velocity in Turbulent Premixed Combustion in the Context of Reynolds Averaged Navier Stokes Simulations, Phys. Fluids, vol. 25, 045101, 2013.
  • N. Chakraborty, L. Wang, and M. Klein, Effects of Lewis Number on Streamline Segment Analysis of Turbulent Premixed Flames, Phys. Rev. E, vol. 89, 033015, 2014.
  • Y. Gao, N. Chakraborty, and N. Swaminathan, Scalar Dissipation Rate Transport in the Context of Large Eddy Simulations for Turbulent Premixed Flames with Non-Unity Lewis Number, Flow Turb. Combust., vol. 93, pp. 461–486, 2014.
  • R. W. Bilger, Some Aspects of Scalar Dissipation, Flow Turb. Combust., vol. 72, pp. 93–114, 2004.
  • R. O. Fox, Computational Models for Turbulent Reacting Flow, Cambridge University Press, Cambridge, UK, 2003.
  • N. Kasagi, Y. Tomita, and A. Kuroda, Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow, J. Heat Transfer, vol. 114, no. 3, pp. 598–606, 2008.
  • S. C. P. Cheung, G. H. Yeoh, A. L. K. Cheung, R. K. K. Yuen, and S. M. Lo, Flickering Behaviour of Turbulent Fires Using Large Eddy Simulation, Numer. Heat Trans. A., vol. 52, no. 7, pp. 679–712, 2007.
  • K. N. C. Bray, Turbulent Flows with Premixed Reactants, in P. A. Libby, and F. A. Williams, (eds.), Turbulent Reacting Flows, Springer Verlag, Berlin Heidelburg, New York, pp. 115–183, 1980.
  • N. Chakraborty M. Champion A. Mura, and N. Swaminathan, Scalar Dissipation Rate Approach to Reaction Rate Closure, in N. Swaminathan, and K. N. C. Bray, (eds.), Turbulent Premixed Flame, 1st ed., Cambridge University Press, Cambridge, UK, pp. 76–1023, 2011.
  • S. P. Malkeson and N. Chakraborty, The Modeling of Fuel Mass Fraction Variance Transport in Turbulent Stratified Flames: A Direct Numerical Simulation Study, Numer. Heat Trans. A., vol. 58, no. 3, pp. 187–206, 2010.
  • T. Dunstan, Y. Minamoto, N. Chakraborty, and N. Swaminathan, Scalar Dissipation Rate Modelling for Large Eddy Simulation of Turbulent Premixed Flames, Proc. Combust. Inst., vol. 34, pp. 1193–1201, 2013.
  • Y. Gao, N. Chakraborty, and N. Swaminathan, Algebraic Closure of Scalar Dissipation Rate for Large Eddy Simulations of Turbulent Premixed Combustion, Combust. Sci. Technol., vol. 186, pp. 1309–1337, 2014.
  • T. Ma, Y. Gao, A. M. Kempf, and N. Chakraborty, Validation and Implementation of Algebraic LES Modelling of Scalar Dissipation Rate for Reaction Rate Closure in Turbulent Premixed Combustion, Combust. Flame, vol. 161, pp. 3134–3153, 2014.
  • M. S. Raju, Application of Scalar Monte-Carlo Probability Density Function Method for Turbulent Spray Flames, Numer. Heat Trans. A, vol. 30, no. 8, pp. 753–777, 1996.
  • Y. Pei, E. R. Hawkes, and S. Kook, Transported Probability Density Function Modelling of the Vapour Phase of an n-Heptane Jet at Diesel Engine Conditions, Proc. Combust. Inst., vol. 34, pp. 3039–3047, 2013.
  • Y. Pei, E. R. Hawkes, and S. Kook, A Comprehensive Study of Effects of Mixing, and Chemical Kinetic Models on Predictions of n-Heptane Jet Ignitions with the PDF Method, Flow, Turb. Combust., vol. 91, pp. 249–280, 2013.
  • T. Mantel and R. Borghi, New Model of Premixed Wrinkled Flame Propagation Based on a Scalar Dissipation Equation, Combust. Flame, vol. 96, no. 4, pp. 443–457, 1994.
  • A. Mura and R. Borghi, Towards an Extended Scalar Dissipation Equation for Turbulent Premixed Combustion, Combust. Flame, vol. 133, pp. 193–196, 2003.
  • N. Swaminathan and K. N. C. Bray, Effect of Dilatation on Scalar Dissipation in Turbulent Premixed Flames, Combust. Flame, vol. 143, pp. 549–565, 2005.
  • N. Chakraborty, and N. Swaminathan, Influence of Damköhler Number on Turbulence-Scalar Interaction in Premixed Flames, Part I: Physical Insight, Phys. Fluids, vol. 19, 045103, 2007.
  • N. Chakraborty, and N. Swaminathan, Influence of Damköhler Number on Turbulence-Scalar Interaction in Premixed Flames, Part II: Model Development, Phys. Fluids, vol. 19, 045104, 2007.
  • N. Chakraborty, J. W. Rogerson, and N. Swaminathan, A Priori Assessment of Closures for Scalar Dissipation Rate Transport in Turbulent Premixed Flames Using Direct Numerical Simulation, Phys. Fluids, vol. 20, 045106, 2008.
  • N. Chakraborty, J. W. Rogerson, and N. Swaminathan, The Scalar Gradient Alignment Statistics of Flame Kernels and Its Modelling Implications for Turbulent Premixed Combustion, Flow Turb. Combust., vol. 85, pp. 25–55, 2010.
  • A. Mura, K. Tsuboi, and T. Hasegawa, Modelling of the Correlation between Velocity and Reactive Scalar Gradients in Turbulent Premixed Flames based on DNS Data. Combust. Theor. Modell., vol. 12, pp. 671–698, 2008.
  • A. Mura, V. Robin, M. Champion, and T. Hasegawa, Small-Scale Features of Velocity and Scalar Fields of Turbulent Premixed Flames, Flow Turb. Combust., vol. 82, pp. 339–358, 2009.
  • N. Chakraborty and N. Swaminathan, Effects of Turbulent Reynolds Number on the Scalar Dissipation Rate Transport in Turbulent Premixed Flames in the Context of Reynolds Averaged Navier Stokes Simulations, Combust. Sci. Technol., vol. 185, pp. 676–709, 2013.
  • E. Knudsen, E. S. Richardson, E. M. Doran, H. Pitsch, and J. H. Chen, Modeling Scalar Dissipation, and Scalar Variance in Large Eddy Simulation: Algebraic, and Transport Equation Closures, Phys. Fluids, vol. 24, 055103, 2012.
  • Y. Gao, N. Chakraborty, and N. Swaminathan, Scalar Dissipation Rate Transport and Its Modelling for Large Eddy Simulations of Turbulent Premixed Combustion, Combust. Sci. Technol., vol. 187, no. 3, pp. 362–383, 2015.
  • J. H. Chen, A. Choudhary, D. De Supinski, E. R. Hawkes, S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorski, R. Sankaran, S. Shende, and C. S. Yoo, Terascale Direct Numerical Simulations of Turbulent Combustion using S3D, Comput. Sci. Discov., vol. 2, no. 1, 015001, 2009.
  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, UK, 2000.
  • K. W. Jenkins and R. S. Cant, DNS of Turbulent Flame Kernels, in C. Liu, L. Sakell, and T. Beautner, (eds.), Proc. Second AFOSR Conf. on DNS and LES, Kluwer Academic Publishers, New Brunswick, NJ, pp. 191–202, 1999.
  • M. Boger, D. Veynante, H. Boughanem, and A. Trouvé, Direct Numerical Simulation Analysis of Flame Surface Density Concept for Large Eddy Simulation of Turbulent Premixed Combustion, Proc. Combust. Inst., vol. 27, pp. 917–925, 1998.
  • F. Charlette, C. Meneveau, and D. Veynante, A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion. Part I: Non-Dynamic Formulation and Initial Tests, Combust. Flame, vol. 131, pp. 159–180, 2002.
  • R. W. Grout, An Age-Extended Progress Variable for Conditioning Reaction Rates, Phys. Fluids, vol. 19, 105107, 2007.
  • H. Reddy, and J. Abraham, Two-Dimensional Direct Numerical Simulation Evaluation of the Flame Surface Density Model for Flames Developing from an Ignition Kernel in Lean Methane/Air Mixtures Under Engine Conditions, Phys. Fluids, vol. 24, 105108, 2012.
  • C. Pera, S. Chevillard, and J. Reveillon, Effects of Residual Burnt Gas Heterogeneity on Early Flame Propagation and on Cyclic Variability in Spark-Ignited Engines, Combust. Flame, vol. 160, pp. 1020–1032, 2013.
  • D. Veynante, A. Trouvé, K. N. C. Bray, and T. Mantel, Gradient and Countergradient Turbulent Scalar Transport in Turbulent Premixed Flames, J. Fluid Mech., vol. 332, pp. 263–293, 1997.
  • N. Chakraborty and R. S. Cant, Effects of Turbulent Reynolds Number on Turbulent Scalar Flux Modelling in Premixed Flames using Reynolds Averaged Navier-Stokes Simulations, Numer. Heat Trans. A, vol. 67, no. 11, pp. 1187–1207, 2015.
  • Y. Gao, N. Chakraborty, and M. Klein, Assessment of the Performances of Sub-Grid Scalar Flux Models for Premixed Flames with Different Global Lewis Numbers: A Direct Numerical Simulation Analysis, Int. J. Heat Fluid Flow, vol. 52, pp. 28–39, 2015.
  • H. Kolla, J. Rogerson, N. Chakraborty, and N. Swaminathan, Prediction of Turbulent Flame Speed using Scalar Dissipation Rate, Combust. Sci. Technol., vol. 181, pp. 518–535, 2009.
  • J. W. Rogerson and N. Swaminathan, Correlation between Dilatation and Scalar Dissipation in Turbulent Premixed Flames, Proc. 3rd European Combustion Meeting Crete, China, Greece, 11th to 13th April, 2007.