Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 74, 2018 - Issue 12
185
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical prediction of performance of a low-temperature-differential gamma-type Stirling engine

, &
Pages 1770-1785 | Received 02 Sep 2018, Accepted 19 Dec 2018, Published online: 05 Mar 2019
 

Abstract

In this study, a numerical simulation model is used to analyze thermodynamic performance of a low temperature-differential gamma-type Stirling engine by adjusting some values of the operating and geometrical parameters around a designated baseline case. The influences of these operating and geometrical parameters on engine performance such as working fluid materials, the stroke of piston and displacer, charged pressure, the heating temperature, and so on, are concerned. A numerical simulation model is established based on turbulent flow assumption and the realizable k – ε model is employed to solve the flow and thermal fields in the engine. In regard to flow in regenerator, Darcy–Forchheimer model was used to depict dynamic behavior of working fluid. Besides, thermal equilibrium model was used for solving the energy equation. Finally, working fluid in the engine undergoes a wide range of pressure and temperature so the effects of temperature and pressure on the viscosity and thermal conductivity of the working fluid are required to include. Thermal conductivity of porous medium matrix is affected by wide range of temperature as well.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.