Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 15
46
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of elasticity and waviness of the conductive panel surface on the cooling performance and entropy generation by using nano-enhanced multiple impinging jets

ORCID Icon & ORCID Icon
Pages 2439-2459 | Received 28 Feb 2023, Accepted 03 Jun 2023, Published online: 22 Jun 2023
 

Abstract

The design of cooling systems is crucial for the thermal management of many energy systems including batteries, microelectro-mechanical systems, photovoltaics and many others. In this study, cooling system for elastic curved conductive panel is developed by using nano-enhanced multiple jet impingement. ALE finite element modeling of the entire coupled fluid-structure conjugate heat transfer system is employed for assessment, which considers both elastic flat and wavy panels. Type of the panel and operating parameters affect the cooling performance and entropy generation. Different effects and contributions of varying parameters such as Cauchy number (Ca), jet-cooling spacing (to the target plate and between the slots), wave amplitude and number of the conducive panel and nanoparticle loading amount in the pure fluid on the cooling performance and entropy generation features are analyzed. Increases in the Cauchy number, waveform amplitude, slot-slot distance, and slot-plate distance reduce the effectiveness of cooling, whereas increases in the nanoparticle loading have the reverse effect. When varying the Ca, there is 12.1% decrease of average Nusselt number (Nu) while average panel temperature rise becomes 3.1°C by using nanofluid. The average Nu deteriorates by 7.7% and 6.6% when amplitude and wave number are varied while the corresponding temperature rises are achieved as 1.4°C and 1°C. When wavy and flat surfaces are used, using nanofluid provides 2.8°C and 2.5°C temperature drops. Lower entropy generation (EG) is obtained with flexible panel while higher amplitude of the wave form and increasing the nanoparticle amount result in EG reduction. The amount of EG reduction by using nanofluid becomes 21% and 27% at the highest loading.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.