Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 15
49
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of elasticity and waviness of the conductive panel surface on the cooling performance and entropy generation by using nano-enhanced multiple impinging jets

ORCID Icon & ORCID Icon
Pages 2439-2459 | Received 28 Feb 2023, Accepted 03 Jun 2023, Published online: 22 Jun 2023

References

  • S. Sargunanathan, A. Elango and S. T. Mohideen, “Performance enhancement of solar photovoltaic cells using effective cooling methods: a review,” Renewable Sustainable Energy Rev., vol. 64, pp. 382–393, 2016. DOI: 10.1016/j.rser.2016.06.024.
  • F. Selimefendigil and H. F. Öztop, “Comparative study on different cooling techniques for photovoltaic thermal management: hollow fins, wavy channel and insertion of porous object with hybrid nanofluids,” Appl. Therm. Eng., vol. 228, p. 120458, 2023. DOI: 10.1016/j.applthermaleng.2023.120458.
  • H. M. Bahaidarah, “Experimental performance evaluation and modeling of jet impingement cooling for thermal management of photovoltaics,” Solar Energy, vol. 135, pp. 605–617, 2016. DOI: 10.1016/j.solener.2016.06.015.
  • M. Hasanuzzaman, A. Malek, M. Islam, A. Pandey and N. Rahim, “Global advancement of cooling technologies for pv systems: a review,” Solar Energy, vol. 137, pp. 25–45, 2016. DOI: 10.1016/j.solener.2016.07.010.
  • A. Torbatinezhad, M. Rahimi, A. Ranjbar and M. Gorzin, “Performance evaluation of PV cells in HCPV/T system by a jet impingement/mini-channel cooling scheme,” Int. J. Heat Mass Transfer, vol. 178, pp. 121610, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121610.
  • F. Selimefendigil and H. F. Öztop, “Hybrid nano-jet impingement cooling of a curved elastic hot surface under the combined effects of non-uniform magnetic field and upper plate inclination,” J. Magn. Magn. Mater., vol. 561, p. 169684, 2022. DOI: 10.1016/j.jmmm.2022.169684.
  • G. Liang and I. Mudawar, “Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels,” Int. J. Heat Mass Transfer, vol. 136, pp. 324–354, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.086.
  • M. Amani, et al., “Latest developments in nanofluid flow and heat transfer between parallel surfaces: a critical review,” Adv. Colloid Interface Sci., vol. 294, p. 102450, 2021. DOI: 10.1016/j.cis.2021.102450.
  • O. Mahian, et al., “Recent advances in modeling and simulation of nanofluid flows-part i: fundamentals and theory,” Phys. Rep., vol. 790, pp. 1–48, 2019. DOI: 10.1016/j.physrep.2018.11.004.
  • Y. Menni, et al., “Enhancement of the turbulent convective heat transfer in channels through the baffling technique and oil/multiwalled carbon nanotube nanofluids,” Numer. Heat Transfer, Part A: Appl., vol. 79, no. 4, pp. 311–351, 2021. DOI: 10.1080/10407782.2020.1842846.
  • F. Selimefendigil and H. F. Öztop, “Estimation of the mixed convection heat transfer of a rotating cylinder in a vented cavity subjected to nanofluid by using generalized neural networks,” Numer. Heat Transfer, Part A: Appl., vol. 65, no. 2, pp. 165–185, 2014. DOI: 10.1080/10407782.2013.826109.
  • M. Sheikholeslami, S. A. Farshad, Z. Ebrahimpour and Z. Said, “Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: a review,” J. Cleaner Prod., vol. 293, p. 126119, 2021. DOI: 10.1016/j.jclepro.2021.126119.
  • H. Adun, D. Kavaz and M. Dagbasi, “Review of ternary hybrid nanofluid: synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects,” J. Cleaner Prod., vol. 328, p. 129525, 2021. DOI: 10.1016/j.jclepro.2021.129525.
  • F. Selimefendigil and H. F. Öztop, “Multijet impingement heat transfer under the combined effects of encapsulated-pcm and inclined magnetic field during nanoliquid convection,” Int. J. Heat Mass Transfer, vol. 203, p. 123764, 2023. DOI: 10.1016/j.ijheatmasstransfer.2022.123764.
  • A. H. Pordanjani, et al., “Nanofluids: physical phenomena, applications in thermal systems and the environment effects-a critical review,” J. Cleaner Prod., vol. 320, p. 128573, 2021. DOI: 10.1016/j.jclepro.2021.128573.
  • X. Wang, et al., “A comprehensive review on the application of nanofluid in heat pipe based on the machine learning: theory, application and prediction,” Renewable Sustainable Energy Rev., vol. 150, pp. 111434, 2021. DOI: 10.1016/j.rser.2021.111434.
  • F. Selimefendigil, A. H. El-Sinawi and H. F. Oztop, “Optimization of bifurcating channel cooling system for double inclined conductive panel system under inclined magnetic field,” Int. J. Therm. Sci., vol. 191, p. 108358, 2023. DOI: 10.1016/j.ijthermalsci.2023.108358.
  • B. Sun, Y. Qu and D. Yang, “Heat transfer of single impinging jet with Cu nanofluids,” Appl. Therm. Eng., vol. 102, pp. 701–707, 2016. DOI: 10.1016/j.applthermaleng.2016.03.166.
  • A. Datta, S. Kumar and P. Halder, “Heat transfer and thermal characteristics effects on moving plate impinging from Cu-water nanofluid jet,” J. Therm. Sci., vol. 29, no. 1, pp. 182–193, 2020. DOI: 10.1007/s11630-019-1107-7.
  • M. M. Sorour, W. M. El-Maghlany, M. A. Alnakeeb and A. M. Abbass, “Experimental study of free single jet impingement utilizing high concentration sio2 nanoparticles water base nanofluid,” Appl. Therm. Eng., vol. 160, p. 114019, 2019. DOI: 10.1016/j.applthermaleng.2019.114019.
  • J. Mohammadpour and A. Lee, “Investigation of nanoparticle effects on jet impingement heat transfer: a review,” J. Mol. Liq., vol. 316, p. 113819, 2020. DOI: 10.1016/j.molliq.2020.113819.
  • P. K. Tyagi, R. Kumar and P. K. Mondal, “A review of the state-of-the-art nanofluid spray and jet impingement cooling,” Phys. Fluids, vol. 32, no. 12, pp. 121301, 2020. DOI: 10.1063/5.0033503.
  • K. Baghel, A. Sridharan and J. S. Murallidharan, “Heat transfer characteristics of free surface water jet impingement on a curved surface,” Int. J. Heat Mass Transfer, vol. 164, p. 120487, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120487.
  • C. Cornaro, A. S. Fleischer, M. Rounds and R. J. Goldstein, “Jet impingement cooling of a convex semi-cylindrical surface,” Int. J. Therm. Sci., vol. 40, no. 10, pp. 890–898, 2001. DOI: 10.1016/S1290-0729(01)01275-3.
  • Z. Li, J. Liu, W. Zhou, Y. Liu and X. Wen, “Experimental investigation of flow dynamics of sweeping jets impinging upon confined concave surfaces,” Int. J. Heat Mass Transfer, vol. 142, pp. 118457, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118457.
  • Y. Zhou, G. Lin, X. Bu, L. Bai and D. Wen, “Experimental study of curvature effects on jet impingement heat transfer on concave surfaces,” Chin. J. Aeronaut., vol. 30, no. 2, pp. 586–594, 2017. DOI: 10.1016/j.cja.2016.12.032.
  • G. Yang, M. Choi and J. S. Lee, “An experimental study of slot jet impingement cooling on concave surface: effects of nozzle configuration and curvature,” Int. J. Heat Mass Transfer, vol. 42, no. 12, pp. 2199–2209, 1999. DOI: 10.1016/S0017-9310(98)00337-8.
  • C. Cornaro, A. Fleischer and R. J. Goldstein, “Flow visualization of a round jet impinging on cylindrical surfaces,” Exp. Therm. Fluid Sci., vol. 20, no. 2, pp. 66–78, 1999. DOI: 10.1016/S0894-1777(99)00032-1.
  • M. M. Rahman, C. F. Hernandez and J. C. Lallave, “Free liquid jet impingement from a slot nozzle to a curved plate,” Numer. Heat Transfer, Part A: Appl., vol. 57, no. 11, pp. 799–821, 2010. DOI: 10.1080/10407781003800706.
  • A. Alsabery, F. Selimefendigil, I. Hashim, A. Chamkha and M. Ghalambaz, “Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder,” Int. J. Heat Mass Transfer, vol. 140, pp. 331–345, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.06.003.
  • S. M. H. Zadeh, S. Mehryan, E. Izadpanahi and M. Ghalambaz, “Impacts of the flexibility of a thin heater plate on the natural convection heat transfer,” Int. J. Therm. Sci., vol. 145, p. 106001, 2019. DOI: 10.1016/j.ijthermalsci.2019.106001.
  • W. A. Sabbar, M. A. Ismael and M. Almudhaffar, “Fluid-structure interaction of mixed convection in a cavity-channel assembly of flexible wall,” Int. J. Mech. Sci., vol. 149, pp. 73–83, 2018. DOI: 10.1016/j.ijmecsci.2018.09.041.
  • T. Hwang, et al., “Analysis of fluid–elastic-structure interactions in an impinging jet with a dynamic 3d-ptv and non-contact 6d-motion tracking system,” Chem. Eng. J., vol. 130, no. 2–3, pp. 153–164, 2007. DOI: 10.1016/j.cej.2006.06.018.
  • F. Selimefendigil and H. F. Öztop, “Cooling of a partially elastic isothermal surface by nanofluids jet impingement,” J. Heat Transfer, vol. 140, no. 4, pp. 042205, 2018. DOI: 10.1115/1.4038422.
  • G. P. Narayan and S. M. Zubair, et al., “Entropy generation minimization of combined heat and mass transfer devices,” Int. J. Therm. Sci., vol. 49, no. 10, pp. 2057–2066, 2010. DOI: 10.1016/j.ijthermalsci.2010.04.024.
  • M. Roy, T. Basak and S. Roy, “Analysis of entropy generation during mixed convection in porous square cavities: effect of thermal boundary conditions,” Numer. Heat Transfer, Part A: Appl., vol. 68, no. 9, pp. 925–957, 2015. DOI: 10.1080/10407782.2015.1023134.
  • A. Shahsavar, M. Rashidi, M. M. Mosghani, D. Toghraie and P. Talebizadehsardari, “A numerical investigation on the influence of nanoadditive shape on the natural convection and entropy generation inside a rectangle-shaped finned concentric annulus filled with boehmite alumina nanofluid using two-phase mixture model,” J. Therm. Anal. Calorim., vol. 141, no. 2, pp. 915–930, 2020. DOI: 10.1007/s10973-019-09076-w.
  • G. Mandal and D. Pal, “Estimation of entropy generation and heat transfer of magnetohydrodynamic quadratic radiative Darcy–Forchheimer cross hybrid nanofluid (GO + Ag/kerosene oil) over a stretching sheet,” Numer. Heat Transfer, Part A: Appl., pp. 1–24, 2023. DOI: 10.1080/10407782.2022.2163944.
  • A. Mosavi, S. N. Sedeh, D. Toghraie and A. Karimipour, “Analysis of entropy generation of ferrofluid flow in the microchannel with twisted porous ribs: the two-phase investigation with various porous layers,” Powder Technol., vol. 380, pp. 349–357, 2021. DOI: 10.1016/j.powtec.2020.11.078.
  • Y.-T. Yang, Y.-H. Wang and B.-Y. Huang, “Numerical optimization for nanofluid flow in microchannels using entropy generation minimization,” Numer. Heat Transfer, Part A: Appl., vol. 67, no. 5, pp. 571–588, 2015. DOI: 10.1080/10407782.2014.937282.
  • F. Selimefendigil and H. F. Öztop, “Mhd mixed convection and entropy generation of power law fluids in a cavity with a partial heater under the effect of a rotating cylinder,” Int. J. Heat Mass Transfer, vol. 98, pp. 40–51, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.092.
  • M. Ibrahim, T. Saeed, F. R. Bani, S. N. Sedeh, Y.-M. Chu and D. Toghraie, “Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field,” Powder Technol., vol. 384, pp. 522–541, 2021. DOI: 10.1016/j.powtec.2021.01.077.
  • P. Barnoon, M. Ashkiyan and D. Toghraie, “Embedding multiple conical vanes inside a circular porous channel filled by two-phase nanofluid to improve thermal performance considering entropy generation,” Int. Commun. Heat Mass Transfer, vol. 124, p. 105209, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105209.
  • M. Siavashi, H. R. T. Bahrami and H. Saffari, “Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model,” Numer. Heat Transfer, Part A: Appl., vol. 71, no. 12, pp. 1251–1273, 2017. DOI: 10.1080/10407782.2017.1345270.
  • N. S. Gibanov, M. A. Sheremet, H. F. Oztop and K. Al-Salem, “Effect of uniform inclined magnetic field on natural convection and entropy generation in an open cavity having a horizontal porous layer saturated with a ferrofluid,” Numer. Heat Transfer, Part A: Appl., vol. 72, no. 6, pp. 479–494, 2017. DOI: 10.1080/10407782.2017.1386515.
  • A. Bejan, “Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture,” Int. J. Energy Res., vol. 26, no. 7, pp. 0–43, 2002. DOI: 10.1002/er.804.
  • O. Mahian, et al., “A review of entropy generation in nanofluid flow,” Int. J. Heat Mass Transfer, vol. 65, pp. 514–532, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.010.
  • O. Mahian, A. Kianifar, A. Z. Sahin and S. Wongwises, “Entropy generation during Al2O3/water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models,” Int. J. Heat Mass Transfer, vol. 78, pp. 64–75, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.06.051.
  • J. Alsarraf, A. Shahsavar, R. B. Mahani and P. Talebizadehsardari, “Turbulent forced convection and entropy production of a nanofluid in a solar collector considering various shapes for nanoparticles,” Int. Commun. Heat Mass Transfer, vol. 117, p. 104804, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104804.
  • S. Parvin, R. Nasrin and M. Alim, “Heat transfer and entropy generation through nanofluid filled direct absorption solar collector,” Int. J. Heat Mass Transfer, vol. 71, pp. 386–395, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.043.
  • Y. Y. Gan, H. C. Ong, T. C. Ling, N. W. M. Zulkifli, C.-T. Wang and Y.-C. Yang, “Thermal conductivity optimization and entropy generation analysis of titanium dioxide nanofluid in evacuated tube solar collector,” Appl. Therm. Eng., vol. 145, pp. 155–164, 2018. DOI: 10.1016/j.applthermaleng.2018.09.012.
  • B. Boudraa and R. Bessaïh, “Three-dimensional analysis of heat transfer and entropy production of jet impingement hybrid nanofluid cooling a porous media-filled heat sink,” Energy Sources, Part A: Recovery Util. Environ. Eff., vol. 44, no. 3, pp. 6035–6062, 2022. DOI: 10.1080/15567036.2022.2095460.
  • B. Yousefi-Lafouraki, A. Ramiar and S. Mohsenian, “Entropy generation analysis of a confined slot impinging jet in a converging channel for a shear thinning nanofluid,” Appl. Therm. Eng., vol. 105, pp. 675–685, 2016. DOI: 10.1016/j.applthermaleng.2016.03.067.
  • A. Mukherjee, S. Rout and A. K. Barik, “Heat transfer and entropy generation analysis of a protruded surface in presence of a cross-flow jet using al2o3-water nanofluid,” Therm. Sci. Eng. Prog., vol. 5, pp. 327–338, 2018. DOI: 10.1016/j.tsep.2018.01.001.
  • M. Mahmoudabadbozchelou, A. Eghtesad, S. Jamali and H. Afshin, “Entropy analysis and thermal optimization of nanofluid impinging jet using artificial neural network and genetic algorithm,” Int. Commun. Heat Mass Transfer, vol. 119, p. 104978, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104978.
  • A. Waqas and J. Ji, “Thermal management of conventional PV panel using PCM with movable shutters–A numerical study,” Solar Energy, vol. 158, pp. 797–807, 2017. DOI: 10.1016/j.solener.2017.10.050.
  • J. Ji, K. Liu, T-t Chow, G. Pei, W. He and H. He, “Performance analysis of a photovoltaic heat pump,” Appl. Energy, vol. 85, no. 8, pp. 680–693, 2008. DOI: 10.1016/j.apenergy.2008.01.003.
  • L. Wang, C. Huang, X. Yang, Z. Chai and B. Shi, “Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution,” Int. J. Heat Mass Transfer, vol. 128, pp. 688–699, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.007.
  • E. V. Timofeeva, J. L. Routbort and D. Singh, “Particle shape effects on thermophysical properties of alumina nanofluids,” J. Appl. Phys., vol. 106, no. 1, p. 014304, 2009. DOI: 10.1063/1.3155999.
  • R. W. Lewis, P. Nithiarasu and K. N. Seetharamu, Fundamentals of the Finite Element Method for Heat and Fluid Flow. West Sussex, UK: John Wiley & Sons, 2004.
  • J. N. Reddy and D. K. Gartling, The Finite Element Method in Heat Transfer and Fluid Dynamics. Boca Raton, FL, USA: CRC Press, 2010.
  • F. Selimefendigil, H. F. Oztop and A. J. Chamkha, “Jet impingement heat transfer of confined single and double jets with non-newtonian power law nanofluid under the inclined magnetic field effects for a partly curved heated wall,” Sustainability, vol. 13, no. 9, p. 5086, 2021. DOI: 10.3390/su13095086.
  • S. Das, A. Biswas and B. Das, “Numerical analysis of a solar air heater with jet impingement–comparison of performance between jet designs,” J. Solar Energy Eng., vol. 144, no. 1, pp. 011001, 2022. DOI: 10.1115/1.4051478.
  • P. A. K. Lam and K. A. Prakash, “A numerical investigation of heat transfer and entropy generation during jet impingement cooling of protruding heat sources without and with porous medium,” Energy Convers. Manage., vol. 89, pp. 626–643, 2015. DOI: 10.1016/j.enconman.2014.10.026.
  • O. Manca, D. Ricci, S. Nardini and G. Di Lorenzo, “Thermal and fluid dynamic behaviors of confined laminar impinging slot jets with nanofluids,” Int. Commun. Heat Mass Transfer, vol. 70, pp. 15–26, 2016. DOI: 10.1016/j.icheatmasstransfer.2015.11.010.
  • Y. Chou and Y. Hung, “Impingement cooling of an isothermally heated surface with a confined slot jet,” ASME,” J. Heat Transfer, vol. 116, no. 2, pp. 479–482, 1994. DOI: 10.1115/1.2911422.
  • A. Raisi and I. Arvin, “A numerical study of the effect of fluid-structure interaction on transient natural convection in an air-filled square cavity,” Int. J. Therm. Sci., vol. 128, pp. 1–14, 2018. DOI: 10.1016/j.ijthermalsci.2018.02.012.
  • F. Selimefendigil and H. F. Öztop, “Al2O3-water nanofluid jet impingement cooling with magnetic field,” Heat Transfer Eng., vol. 41, no. 1, pp. 50–64, 2020. DOI: 10.1080/01457632.2018.1513626.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.