1,131
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Mashing performance as a function of malt particle size in beer production

, , , & ORCID Icon
 

Abstract

Significant innovations have occurred over the past 50 years in the malting and brewing industries, focused on optimization of the beer mashing, boiling and fermentation processes. One of the challenges faced in beer brewing has been in the malting process to obtain the desired malt and wort quality to produce high-quality beer products. The hydrolytic enzymes produced during grain germination are mostly entrapped inside the cellular matrices of the grain. The intra-grain diffusion of enzymes for in-situ hydrolysis, as well as diffusion of enzymes to wort, depends upon the malt size and malt size fractions obtained after milling. This review investigates the relationship between varying barley grain particle size distribution and the efficiency of the malting and mashing processes. Recommended ideal particle size of barley grain before and after milling are proposed based on the review of existing literature. Each brewing batch of grains with a proportion of >80% plump grains (>2.5 mm in size) is suggested to be the optimal size before milling, whereas the optimum grain particle size after milling ranged between 0.25 and 0.5 mm. The current review will summarize the theoretical aspects for malt milling and the particle size characteristics for optimizing the brewing process.

Acknowledgment

W.Y.T. would like to thank Ms. Ashley Yeen Tze Cheng (Chemical Engineering Graduate, Monash University) for her contribution and assistance during the early stage of the review process.

Conflicts of interest

The authors have declared no conflict of interest.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.