261
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Enzyme-instructed self-assembly of the stereoisomers of pentapeptides to form biocompatible supramolecular hydrogels

ORCID Icon, , , & ORCID Icon
Pages 760-765 | Received 11 May 2020, Accepted 08 Jul 2020, Published online: 27 Jul 2020
 

Abstract

This article reports enzyme-instructed self-assembly (EISA) of stereoisomers of pentapeptides as a simple approach for generating biocompatible supramolecular hydrogels as potential soft bionanomaterials. Peptide-based supramolecular hydrogels are emerging as a new type of biomaterials. The use of tyrosine phosphate offers a trigger for enzymatic hydrogelation, and the incorporation of D-amino acids can increase the proteolytic stability of peptides. This work compared four phosphorpeptides that are stereoisomers in terms of rate of dephosphorylation, proteolytic stability, and cell compatibility. The results show that the naphthyl (Nap)-capped pentapeptides, containing the amino acid sequence of Phe-Phe-Gly-Glu-pTyr, are able to undergo EISA to form the hydrogels consisting the nanofibres of the dephosphorylated pentapeptides. The naphthyl-capped D-phosphopentpeptides, contrasting to a naphthyl-capped D-phosphotripeptide (Nap-D-Phe-D-Phe-D-pTyr), are largely cell compatible. This result, suggesting that the sequence of phophopeptides also dedicates the cell compatibility of the peptide assemblies resulted from EISA, provides useful insights for developing supramolecular hydrogels as potential biomaterials with tailored properties.

Disclosure statement

The authors report no conflict of interest.

Additional information

Funding

This work in partially support by a research grant from NIH [R01CA142746].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.