261
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Enzyme-instructed self-assembly of the stereoisomers of pentapeptides to form biocompatible supramolecular hydrogels

ORCID Icon, , , & ORCID Icon
Pages 760-765 | Received 11 May 2020, Accepted 08 Jul 2020, Published online: 27 Jul 2020

References

  • Gao Y, Yang Z, Kuang Y, et al. Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels. Biopolymers. 2010;94(1):19–31.
  • Yang Z, Liang G, Xu B. Enzymatic hydrogelation of small molecules. Acc Chem Res. 2008;41(2):315–326.
  • Yang Z, Xu K, Guo Z, et al. Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death. Adv Mater. 2007;19(20):3152–3156.
  • Todd SJ, Farrar D, Gough JE, et al. Enzyme-triggered cell attachment to hydrogel surfaces. Soft Matter. 2007;3(5):547–550.
  • Hughes M, Frederix P, Raeburn J, et al. Sequence/structure relationships in aromatic dipeptide hydrogels formed under thermodynamic control by enzyme-assisted self-assembly. Soft Matter. 2012;8(20):5595–5602.
  • Estroff LA, Hamilton AD. Water gelation by small organic molecules. Chem Rev. 2004;104(3):1201–1217.
  • Gao J, Zhan J, Yang Z. Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides. Adv Mater. 2020;32(3):1805798.
  • Shy AN, Kim BJ, Xu B. Enzymatic noncovalent synthesis of supramolecular soft matter for biomedical applications. Matter. 2019;1(5):1127–1147.
  • Kim BJ, Yang D, Xu B. Emerging applications of supramolecular peptide assemblies. Trends Chem. 2020;2(1):71–83.
  • Wang H, Feng Z, Xu B. Assemblies of peptides in a complex environment and their applications. Angew Chem Int Ed Engl. 2019;58(31):10423–10432.
  • Yang Z, Liang G, Guo Z, et al. Intracellular hydrogelation of small molecules inhibits bacterial growth. Angew Chem Int Ed Engl. 2007;46(43):8216–8219.
  • Gao Y, Shi J, Yuan D, et al. Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat Commun. 2012;3(1):1033.
  • Gao Y, Kuang Y, Du X, et al. Imaging self-assembly dependent spatial distribution of small molecules in a cellular environment. Langmuir. 2013;29(49):15191–15200.
  • Kuang Y, Shi J, Li J, et al. Pericellular hydrogel/nanonets inhibit cancer cells. Angew Chem Int Ed Engl. 2014; 53(31):8104–8107.
  • Wang H, Wei J, Yang C, et al. The inhibition of tumor growth and metastasis by self-assembled nanofibers of taxol. Biomaterials. 2012;33(24):5848–5853.
  • Newcomb CJ, Sur S, Ortony JH, et al. Cell death versus cell survival instructed by supramolecular cohesion of nanostructuresl. Nat Commun. 2014;5(1):5.
  • Zorn JA, Wille H, Wolan DW, et al. Self-assembling small molecules form nanofibrils that bind procaspase-3 to promote activation. J Am Chem Soc. 2011;133(49):19630–19633.
  • Feng Z, Han X, Wang H, et al. Enzyme-instructed peptide assemblies selectively inhibit bone tumors. Chem. 2019;5(9):2442–2449.
  • Pires RA, Abul-Haija YM, Costa DS, et al. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. J Am Chem Soc. 2015;137(2):576–579.
  • Tanaka A, Fukuoka Y, Morimoto Y, et al. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J Am Chem Soc. 2015; 137(2):770–775.
  • Du X, Zhou J, Shi J, et al. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev. 2015;115(24):13165–13307.
  • Zhou J, Li J, Du X, et al. Supramolecular biofunctional materials. Biomaterials. 2017;129:1–27.
  • Komatsu H, Matsumoto S, Tamaru S-i, et al. Supramolecular hydrogel exhibiting four basic logic gate functions to fine-tune substance release. J Am Chem Soc. 2009;131(15):5580–5585.
  • Fan K, Yang J, Wang X, et al. Rational construction of gel-based supramolecular logic gates by using a functional gelator with multiple-stimuli responsive properties. Soft Matter. 2014;10(41):8370–8375.
  • Tang W, Zhao Z, Chong Y, et al. Tandem enzymatic self-assembly and slow release of dexamethasone enhances its antihepatic fibrosis effect. ACS Nano. 2018;12(10):9966–9973.
  • Liang C, Zhang L, Zhao W, et al. Supramolecular nanofibers of drug-peptide amphiphile and affibody suppress HER2+ tumor growth. Adv Healthcare Mater. 2018;7(22):1800899.
  • Haines LA, Rajagopal K, Ozbas B, et al. Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J Am Chem Soc. 2005;127(48):17025–17029.
  • Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8(5):607–626.
  • Chronopoulou L, Sennato S, Bordi F, et al. Designing unconventional Fmoc-peptide-based biomaterials: structure and related properties. Soft Matter. 2014;10(12):1944–1952.
  • Nguyen MM, Eckes KM, Suggs LJ. Charge and sequence effects on the self-assembly and subsequent hydrogelation of Fmoc-depsipeptides. Soft Matter. 2014;10(15):2693–2702.
  • Wang H, Feng Z, Xu B. Intercellular instructed-assembly mimics protein dynamics to induce cell spheroids. J Am Chem Soc. 2019;141(18):7271–7274.
  • Wang H, Feng Z, Xu B. Instructed assembly as context-dependent signaling for the death and morphogenesis of cells. Angew Chem Int Ed Engl. 2019;58(17):5567–5571.
  • Cushing MC, Anseth KS. Materials science. Hydrogel cell cultures. Science. 2007;316(5828):1133–1134.
  • Li X, Du X, Li J, et al. Introducing D-amino acid or simple glycoside into small peptides to enable supramolecular hydrogelators to resist proteolysis. Langmuir. 2012;28(37):13512–13517.
  • Li J, Gao Y, Kuang Y, et al. Dephosphorylation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy. J Am Chem Soc. 2013;135(26):9907–9914.
  • Cringoli MC, Romano C, Parisi E, et al. Bioadhesive supramolecular hydrogel from unprotected, short d,l-peptides with Phe-Phe and Leu-Asp-Val motifs [10.1039/C9CC09947F. ]. Chem Commun (Camb).). 2020;56(20):3015–3018.
  • Melchionna M,E, Styan K, Marchesan S. The unexpected advantages of using d-amino acids for peptide self- assembly into nanostructured hydrogels for medicine. Curr Top Med Chem. 2016;16(18):2009–2018.
  • Zhou J, Du X, Berciu C, et al. Enzyme-instructed self-assembly for spatiotemporal profiling of the activities of alkaline phosphatases on live cells. Chem. 2016;1(2):246–263.
  • Garcia AM, Iglesias D, Parisi E, et al. Chirality effects on peptide self-assembly unraveled from molecules to materials. Chem. 2018;4(8):1862–1876.
  • Shi J, Du X, Yuan D, et al. d-Amino acids modulate the cellular response of enzymatic-instructed supramolecular nanofibers of small peptides. Biomacromolecules. 2014;15(10):3559–3568.
  • Yang ZM, Liang GL, Wang L, et al. Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J Am Chem Soc. 2006; 28(9):3038–3043.
  • Zhang Y, Kuang Y, Gao Y, et al. Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels. Langmuir. 2011;27(2):529–537.
  • Morihara K, Tsuzuki H. Specificity of proteinase K from Tritirachium album limber for synthetic peptides. Agri Biol Chem. 1975;39(7):1489–1492.
  • Ageitos JM, Baker PJ, Sugahara M, et al. Proteinase K-catalyzed synthesis of linear and star oligo(l-phenylalanine) conjugates. Biomacromolecules. 2013;14(10):3635–3642.
  • Wu Z, Tan M, Chen X, et al. Molecular hydrogelators of peptoid-peptide conjugates with superior stability against enzyme digestion. Nanoscale. 2012;4(12):3644–3646.
  • Yang D, Kim BJ, He H, et al. Enzymatically forming cell compatible supramolecular assemblies of tryptophan-rich short peptides. Pept Sci. 2020;e24173.
  • Feng Z, Wang H, Wang F, et al. Artificial intracellular filaments. Cell Rep Phys Sci. 2020;1:100085.
  • Rodon Fores J, Criado-Gonzalez M, Schmutz M, et al. Protein-induced low molecular weight hydrogelator self-assembly through a self-sustaining process. Chem Sci. 2019;10(18):4761–4766.
  • Vigier-Carrière C, Boulmedais F, Schaaf P, et al. Surface-assisted self-assembly strategies leading to supramolecular hydrogels. Angew Chem Int Ed Engl. 2018;557(6):1448–1456.
  • Shi J, Fichman G, Schneider JP. Enzymatic control of the conformational landscape of self-assembling peptides. Angew Chem Int Ed Engl. 2018;57(35):11188–11192.
  • Shi J, Schneider JP. De novo design of selective membrane-active peptides by enzymatic control of their conformational bias on the cell surface. Angew Chem Int Ed Engl. 2019;58(39):13706–13710.
  • Godbe JM, Freeman R, Burbulla LF, et al. Gelator length precisely tunes supramolecular hydrogel stiffness and neuronal phenotype in 3D culture. ACS Biomater Sci Eng. 2020;6(2):1196–1207.
  • Yang Z, Xu H, Zhao X. Designer self-assembling peptide hydrogels to engineer 3D cell microenvironments for cell constructs formation and precise oncology remodeling in ovarian cancer. Adv Sci (Weinh)). 2020;7(9):1903718.
  • Xing R, Li S, Zhang N, et al. Self-assembled injectable peptide hydrogels capable of triggering antitumor immune response. Biomacromolecules. 2017;18(11):3514–3523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.