142
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Robust QSAR prediction models for volume of distribution at steady state in humans using relative distance measurements

ORCID Icon & ORCID Icon
Pages 529-550 | Received 09 May 2018, Accepted 25 Jun 2018, Published online: 25 Jul 2018
 

ABSTRACT

The building of quantitative structure–activity relationship (QSAR) models for the in silico prediction of volume distribution for drugs at steady-state levels is vital for the selection of potential drugs at the synthesis stage. Using molecular descriptor matrixes, some regression models presenting low accuracy have been proposed, mainly due to the difficulty of compiling an appropriate dataset and the lack of information on dataset representation. In this paper, we use a benchmark dataset of very diverse drugs for the development of predictive models for volume distribution based on the use of relative distance matrixes as the input data to QSAR algorithms. Support vector machine, complex tree, bagged tree and Gaussian process regression algorithms were tested for fingerprint, similarity and relative distance matrixes used as input data, and the results of the built models were compared. Relative distance matrixes generated robust regression models in the training and external validation stages performed using cross-validation, obtaining values for correlation coefficient, bias, slope and root-mean-square error close to the ideal. Relative distance matrixes were also used for the design of classification models, obtaining excellent results with values of accuracy and area under receiver operating characteristic (AUC) close to 100%.

Supplementary material

The supplemental material for this article can be accessed at: https://doi.org/10.1080/1062936X.2018.1494038

Conflicting interests

The authors declare that they have no competing interests.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.