142
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Robust QSAR prediction models for volume of distribution at steady state in humans using relative distance measurements

ORCID Icon & ORCID Icon
Pages 529-550 | Received 09 May 2018, Accepted 25 Jun 2018, Published online: 25 Jul 2018

References

  • F. Hollosy, K. Valko, A. Hersey, S. Nunhuck, K. Gyorgy, and C. Bevan, Estimation of volume of distribution in humans from high throughput HPLC-based measurements of human serum albumin binding and immobilized artificial membrane partitioning, J. Med. Chem. 49 (2006), pp. 6958–6971.
  • P. Poulin and F.P. Theil, Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J. Pharm. Sci. 91 (2002), pp. 129–156.
  • F. Lombardo, R.S. Obach, F.M. Dicapua, G.A. Bakken, J. Lu, D.M. Potter, F. Gao, M.D. Miller, and Y. Zhang, A hybrid mixture discriminant analysis–random forest computational model for the prediction of volume of distribution of drugs in human, J. Med. Chem. 49 (2006), pp. 2262–2269.
  • B. Louis and V. Agrawal, Prediction of human volume of distribution values for drugs using linear and nonlinear quantitative structure pharmacokinetic relationship models, Interdiscip. Sci. Comput. Life Sci. 6 (2014), pp. 71–83.
  • T. Wajima, K. Fukumura, Y. Yano, and T. Oguma, Prediction of human pharmacokinetics from animal data and molecular structural parameters using multivariate regression analysis: Volume of distribution at steady state, J. Pharm. Pharmacol. 55 (2003), pp. 939–949.
  • T. Ghafourian, M. Barzegar-Jalali, N. Hakimiha, and M.T. Cronin, Quantitative structure–pharmacokinetic relationship modeling: Apparent volume of distribution, J. Pharm. Pharmacol. 56 (2004), pp. 339–350.
  • F. Lombardo, R.S. Obach, M.Y. Shalaeva, and F. Gao, Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data, J. Med. Chem. 45 (2002), pp. 2867–2876.
  • F. Lombardo and Y. Jing, In silico prediction of volume of distribution in humans. Extensive dataset and the exploration of linear and nonlinear methods coupled with molecular interaction fields descriptors, J. Chem. Inf. Model. 56 (2016), pp. 2042–2052.
  • C. Durairaj, J.C. Shah, S. Senapati, and U.B. Kompella, Prediction of vitreal half-life based on drug physicochemical properties: Quantitative structure–pharmacokinetic relationships (QSPKR), Pharm. Res. 26 (2009), pp. 1236–1260.
  • M.P. Gleeson, Plasma protein binding affinity and its relationship to molecular structure: An in silico analysis, J. Med. Chem. 50 (2007), pp. 101–112.
  • O. Demir-Kavuk, J. Bentzien, I. Muegge, and E.W. Knapp, DemQSAR: Predicting human volume of distribution and clearance of drugs, J. Comput. Aided Mol. Des. 25 (2011), pp. 1121–1133.
  • D. Stepensky, Prediction of drug disposition on the basis of its chemical structure, Clin. Pharmacokinet. 52 (2013), pp. 415–431.
  • W.M. Czarnecki, S. Podlewska, and A.J. Bojarskil, Robust optimization of SVM hyperparameters in the classification of bioactive compounds, J. Cheminf. 7 (2015), doi: 101186/1758-2946-7-38.
  • V. Khanna and S. Ranganathan, Structural diversity of biologically interesting datasets: A scaffold analysis approach, J. Cheminf. 3 (2011), doi: 101186/1758-2946-3-30.
  • G. Zahoránszky-Kőhalmi, C.G. Bologa, and T.I. Oprea, Impact of similarity threshold on the topology of molecular similarity networks and clustering outcomes, J. Cheminf. 8 (2016) doi:101186/s13321-016-0127-5.
  • T. Lei, Y. Li, Y. Song, D. Li, H. Sun, and T. Hou, ADMET evaluation in drug discovery: 15 Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling, J. Cheminf. 8 (2016), doi:101186/s13321-016-0117-7.
  • G. Cerruela García, N. García-Pedrajas, I. Luque Ruiz, and M.A. Gómez-Nieto, Molecular activity prediction by means of supervised subspace projection based ensemble of classifiers, SAR QSAR Environ. Res. (2018), pp. 187–212.
  • J.S. Duca and A.J. Hopfinger, Estimation of molecular similarity based on 4D-QSAR analysis: Formalism and validation, J. Chem. Inf. Comput. Sci. 41 (2001), pp. 1367–1387.
  • J. Verma, V.M. Khedkar, and E.C. Coutinho, 3D-QSAR in drug design—A review, Curr. Top. Med. Chem. 10 (2010), pp. 95–115.
  • M. Urbano Cuadrado, I. Luque Ruiz, and M.A. Gómez-Nieto, Refinement and use of the approximate similarity in QSAR models for benzodiazepine receptor ligands, J. Chem. Inf. Model. 46 (2006), pp. 2022–2029.
  • I. Luque Ruiz, M. Urbano Cuadrado, and M.A. Gómez-Nieto, Data fusion of similarity and dissimilarity measurements using Wiener-based indices for the prediction of the NPY Y5 receptor antagonist capacity of benzoxazinones, J. Chem. Inf. Model. 47 (2007), pp. 2235–2241.
  • M. Urbano Cuadrado, I. Luque Ruiz, and M.A. Gómez-Nieto, A steroids QSAR approach based on approximate similarity measurements, J Chem. Inf. Model. 46 (2006), pp. 1678–1686.
  • B. Palacios-Bejarano, G. Cerruela Garcia, I. Luque Ruiz, and M.A. Gómez-Nieto, An algorithm for pattern extraction in fingerprints, Chemom. Intell. Lab. 125 (2013), pp. 87–100.
  • E. Kim and H. Nam, Prediction models for drug-induced hepatotoxicity by using weighted molecular fingerprints, BMC Bioinformatics. 18 (2017), pp. 25–34.
  • M. Vogt and J. Bajorath, Similarity searching for potent compounds using feature selection, J. Chem. Inf. Model. 53 (2013), pp. 1613–1619.
  • Y. Wang, H. Geppert, and J. Bajorath, Shannon entropy-based fingerprint similarity search strategy, J. Chem. Inf. Model. 49 (2009), pp. 1687–1691.
  • G. Cerruela García, I. Luque Ruiz, and M.A. Gómez-Nieto, Analysis and study of molecule datasets using snowflake diagrams of weighted maximum common subgraph trees, J. Chem. Inf. Model. 51 (2011), pp. 1216–1232.
  • I. Luque Ruiz and M.A. Gómez-Nieto, Advantages of relative versus absolute data for the development of quantitative structure–activity relationship classification models, J. Chem. Inf. Model. 57 (2017), pp. 2776–2788.
  • I. Luque Ruiz and M.A. Gómez-Nieto, QSAR classification and regression models for β-secretase inhibitors using relative distance matrixes, SAR QSAR Environ. Res. 29 (2018), pp. 355–383.
  • C.W. Yap. PaDEL-Descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474.
  • MATLAB Statistics and Machine Learning Toolbox 2017Rb. MathWorks, Matick. USA; software available at https://www.mathworks.com/products/statistics.html.
  • R.D. Cook, Detection of influential observations in linear regression, Technometrics 19 (1977), pp. 15–18.
  • R. Veerasamy, H. Rjak, A. Jain, S. Sivadasan, C.P. Varghese, and R.K. Agrawal, Validation of QSAR models – Strategies and importance, Int. J. Drug Des. Disc. 2 (2011), pp. 511–519.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.