2,651
Views
8
CrossRef citations to date
0
Altmetric
Invited Review

Recent advances in electro-Fenton process and its emerging applications

ORCID Icon, , , , , , & show all
Pages 887-913 | Published online: 28 Jun 2022
 

Abstract

The electro-Fenton (EF) process is a powerful electrochemical advanced oxidation process. Its development has progressed over the past three decades as a clean and effective technique for wastewater treatment. Even though conventional EF has been shown to be a powerful process for efficient degradation/mineralization of toxic and/or persistent organic pollutants; it still suffers from some downsides for industrial-scale development. Recently, research has focused on improving its effectiveness and relevance, mainly by modifying certain operating parameters; improvements in electrode material and reactor configuration, as well as coupling with other treatment methods. Therefore, this review evaluates the current state of the EF process and presents the most recent advances such as 3D-EF, chelate-EF, self-powered EF, pulsed current EF, bio-EF, sono-EF, sulfite-EF, pyrite-EF, and ferrate-EF in addition to its emerging applications like disinfection, generation of value-added products, and removal of emerging pollutants from water. The suitability of different modified or hybrid-EF processes is discussed based on their performance in H2O2 generation, degradation kinetics, mineralization efficiency and cost effectiveness. This review article is intended to be comprehensive, critical and of general interest, covering recent developments and advances in EF process with the aim of providing a powerful method for the treatment of wastewater polluted with biorecalcitrant pollutants.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.