2,651
Views
8
CrossRef citations to date
0
Altmetric
Invited Review

Recent advances in electro-Fenton process and its emerging applications

ORCID Icon, , , , , , & show all
Pages 887-913 | Published online: 28 Jun 2022

References

  • Adnan, F. H., Pontvianne, S., Pons, M. N., & Mousset, E. (2022). Unprecedented roles of submillimetric interelectrode distances and electrogenerated gas bubbles on mineral cathodic electro-precipitation: Modeling and interface studies. Chemical Engineering Journal, 431, 133413. https://doi.org/10.1016/j.cej.2021.133413
  • Almeida, L. C., Silva, B. F., & Zanoni, M. V. B. (2015). Photoelectrocatalytic/photoelectro-Fenton coupling system using a nanostructured photoanode for the oxidation of a textile dye: Kinetics study and oxidation pathway. Chemosphere, 136, 63–71. https://doi.org/10.1016/j.chemosphere.2015.04.042
  • Anfruns-Estrada, E., Bruguera-Casamada, C., Salvadó, H., Brillas, E., Sirés, I., & Araujo, R. M. (2017). Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments. Water Research, 126, 450–459. https://doi.org/10.1016/j.watres.2017.09.056
  • Arellano, M., Oturan, N., Oturan, M. A., Pazos, M., Sanromán, M. Á., & González-Romero, E. (2020a). Differential pulse voltammetry as a powerful tool to monitor the electro-Fenton process. Electrochimica Acta, 354, 136740. https://doi.org/10.1016/j.electacta.2020.136740
  • Arellano, M., Oturan, N., Pazos, M., Ángeles Sanromán, M., & Oturan, M. A. (2020b). Coupling electro-Fenton process to a biological treatment, a new methodology for the removal of ionic liquids? Separation and Purification Technology, 233, 115990. https://doi.org/10.1016/j.seppur.2019.115990
  • Babu, D. S., Srivastava, V., Nidheesh, P. V., & Kumar, M. S. (2019). Detoxification of water and wastewater by advanced oxidation processes. Science of the Total Environment, 696, 133961. https://doi.org/10.1016/j.scitotenv.2019.133961
  • Bai, J., Wang, R., Li, Y., Tang, Y., Zeng, Q., Xia, L., Li, X., Li, J., Li, C., & Zhou, B. (2016). A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation. Journal of Hazardous Materials, 311, 51–62. https://doi.org/10.1016/j.jhazmat.2016.02.052
  • Banuelos, J. A., Garcia-Rodriguez, O., Rodriguez-Valadez, F. J., Manriquez, J., Bustos, E., Rodriguez, A., & Godinez, L. A. (2015). Cathodic polarization effect on the electro-Fenton regeneration of activated carbon. Journal of Applied Electrochemistry, 45(5), 523–531. https://doi.org/10.1007/s10800-015-0815-2
  • Birjandi, N., Younesi, H., Ghoreyshi, A. A., & Rahimnejad, M. (2020). Enhanced medicinal herbs wastewater treatment in continuous flow bio-electro-Fenton operations along with power generation. Renewable Energy, 155, 1079–1090. https://doi.org/10.1016/j.renene.2020.04.013
  • Brillas, E., & Garcia-Segura, S. (2020). Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: A review on the relevance of phenol as model molecule. Separation and Purification Technology, 237, 116337. https://doi.org/10.1016/j.seppur.2019.116337
  • Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chemical Reviews, 109(12), 6570–6631. https://doi.org/10.1021/cr900136g
  • Burgos-Castillo, R., Sillanpää, M., Brillas, E., & Sirés, I. (2018). Removal of metals and phosphorus recovery from urban anaerobically digested sludge by electro-Fenton treatment. The Science of the Total Environment, 644, 173–182. https://doi.org/10.1016/j.scitotenv.2018.06.337
  • Cao, P., Quan, X., Zhao, K., Chen, S., Yu, H., & Niu, J. (2020). Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis. Journal of Hazardous Materials, 382, 121102. https://doi.org/10.1016/j.jhazmat.2019.121102
  • Chen, L., Zhou, Z., Shen, C., & Xu, Y. (2020). Inactivation of antibiotic-resistant bacteria and antibiotic resistance genes by electrochemical oxidation/electro-Fenton process. Water Science and Technology, 81(10), 2221–2231. https://doi.org/10.2166/wst.2020.282
  • Chu, L., Sun, Z., Cang, L., Fang, G., Wang, X., Zhou, D., & Gao, J. (2020). A novel sulfite coupling electro-Fenton reactions with ferrous sulfide cathode for anthracene degradation. Chemical Engineering Journal, 400, 125945. https://doi.org/10.1016/j.cej.2020.125945
  • Dang, X., Chen, H., Shan, Z., Zhen, W., & Yang, M. (2019). The oxidation of potato starch by electro-Fenton system in the presence of Fe(II) ions. International Journal of Biological Macromolecules, 121, 113–119. https://doi.org/10.1016/j.ijbiomac.2018.10.012
  • Deng, F., Olvera-Vargas, H., Garcia-Rodriguez, O., Qiu, S., Ma, F., Chen, Z., & Lefebvre, O. (2020). Unconventional electro-Fenton process operating at a wide pH range with Ni foam cathode and tripolyphosphate electrolyte. Journal of Hazardous Materials, 396(March), 122641. https://doi.org/10.1016/j.jhazmat.2020.122641
  • Deng, F., Olvera-Vargas, H., Garcia-Rodriguez, O., Qiu, S., Yang, J., & Lefebvre, O. (2018). The synergistic effect of nickel-iron-foam and tripolyphosphate for enhancing the electro-Fenton process at circum-neutral pH. Chemosphere, 201, 687–696. https://doi.org/10.1016/j.chemosphere.2018.02.186
  • Diaw, P. A., Oturan, N., Gaye Seye, M. D., Mbaye, O. M. A., Mbaye, M., Coly, A., Aaron, J.-J., & Oturan, M. A. (2020). Removal of the herbicide monolinuron from waters by the electro-Fenton treatment. Journal of Electroanalytical Chemistry, 864, 114087. https://doi.org/10.1016/j.jelechem.2020.114087
  • Divyapriya, G., & Nidheesh, P. V. (2021). Electrochemically generated sulfate radicals by boron doped diamond and its environmental applications. Current Opinion in Solid State and Materials Science, 25(3), 100921. https://doi.org/10.1016/j.cossms.2021.100921
  • Divyapriya, G., Singh, S., Martínez-Huitle, C. A., Scaria, J., Karim, A. V., & Nidheesh, P. V. (2021). Treatment of real wastewater by photoelectrochemical methods: An overview. Chemosphere, 276, 130188. https://doi.org/10.1016/j.chemosphere.2021.130188
  • Du, X., Fu, W., Su, P., Cai, J., & Zhou, M. (2020). Internal-micro-electrolysis-enhanced heterogeneous electro-Fenton process catalyzed by Fe/Fe3C@PC core–shell hybrid for sulfamethazine degradation. Chemical Engineering Journal, 398, 125681. https://doi.org/10.1016/j.cej.2020.125681
  • Du, X., Oturan, M. A., Zhou, M., Belkessa, N., Su, P., Cai, J., Trellu, C., & Mousset, E. (2021). Nanostructured electrodes for electrocatalytic advanced oxidation processes: From materials preparation to mechanisms understanding and wastewater treatment applications. Applied Catalysis B: Environment, 296, 120332. https://doi.org/10.1016/j.apcatb.2021.120332
  • El Kateb, M., Trellu, C., Oturan, N., Bellakhal, N., Nesnas, N., Sharma, V. K., & Oturan, M. A. (2022). Ferrate (VI) pre-treatment and subsequent electrochemical advanced oxidation processes: Recycling iron for enhancing oxidation of organic pollutants. Chemical Engineering Journal, 431, 134177. https://doi.org/10.1016/j.cej.2021.134177
  • Espinosa-Barrera, P. A., Delgado-Vargas, C. A., Martínez-Pachón, D., & Moncayo-Lasso, A. (2021). Using computer tools for the evaluation of biodegradability, toxicity, and activity on the AT1 receptor of degradation products identified in the removal of valsartan by using photo-electro-Fenton process. Environmental Science and Pollution Research International, 28(19), 23984–23994. https://doi.org/10.1007/s11356-020-11949-9
  • Farhat, A., Keller, J., Tait, S., & Radjenovic, J. (2018). Oxidative capacitance of sulfate-based boron-doped diamond electrochemical system. Electrochemistry Communications, 89, 14–18. https://doi.org/10.1016/j.elecom.2018.02.007
  • Ganiyu, S. O., de Araújo, M. J. G., de Araújo Costa, E. C. T., Santos, J. L., dos Santos, E. V., Martínez-Huitle, C. A., & Pergher, S. B. C. (2021a). Design of highly efficient porous carbon foam cathode for electro-Fenton degradation of antimicrobial sulfanilamide. Applied Catalysis B: Environmental, 283, 119652. https://doi.org/10.1016/j.apcatb.2020.119652
  • Ganiyu, S. O., & Martínez-Huitle, C. A. (2020). The use of renewable energies driving electrochemical technologies for environmental applications. Current Opinion in Electrochemistry, 22, 211–220. https://doi.org/10.1016/j.coelec.2020.07.007
  • Ganiyu, S. O., Martínez-Huitle, C. A., & Oturan, M. A. (2021b). Electrochemical advanced oxidation processes for wastewater treatment: Advances in formation and detection of reactive species and mechanisms. Current Opinion in Electrochemistry, 27, 100678. https://doi.org/10.1016/j.coelec.2020.100678
  • Ganiyu, S. O., Martínez-Huitle, C. A., & Rodrigo, M. A. (2020). Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. Applied Catalysis B: Environmental, 270(October 2019), 118857. https://doi.org/10.1016/j.apcatb.2020.118857
  • Ganiyu, S. O., Zhou, M., & Martínez-Huitle, C. A. (2018). Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment. Applied Catalysis B: Environmental, 235(5), 103–129. https://doi.org/10.1016/j.apcatb.2018.04.044
  • Ganzenko, O., Trellu, C., Oturan, N., Huguenot, D., Péchaud, Y., van Hullebusch, E. D., & Oturan, M. A. (2020). Electro-Fenton treatment of a complex pharmaceutical mixture: Mineralization efficiency and biodegradability enhancement. Chemosphere, 253(2020), 126659. https://doi.org/10.1016/j.chemosphere.2020.126659
  • Ganzenko, O., Trellu, C., Papirio, S., Oturan, N., Huguenot, D., van Hullebusch, E. D., Esposito, G., & Oturan, M. A. (2018). Bioelectro-Fenton: Evaluation of a combined biological-advanced oxidation treatment for pharmaceutical wastewater. Environmental Science and Pollution Research International, 25(21), 20283–20292. https://doi.org/10.1007/s11356-017-8450-6
  • Gao, G., Zhang, Q., Hao, Z., & Vecitis, C. D. (2015). Carbon nanotube membrane stack for flow-through sequential regenerative electro-fenton. Environmental Science & Technology, 49(4), 2375–2383. https://doi.org/10.1021/es505679e
  • Garcia-Segura, S., & Brillas, E. (2014). Advances in solar photoelectro-Fenton: Decolorization and mineralization of the Direct Yellow 4 diazo dye using an autonomous solar pre-pilot plant. Electrochimica Acta, 140, 384–395. https://doi.org/10.1016/j.electacta.2014.04.009
  • Ghanbari, F., & Martínez-Huitle, C. A. (2019). Electrochemical advanced oxidation processes coupled with peroxymonosulfate for the treatment of real washing machine effluent: A comparative study. Journal of Electroanalytical Chemistry, 847, 113182. https://doi.org/10.1016/j.jelechem.2019.05.064
  • Ghanbarlou, H., Nasernejad, B., Nikbakht Fini, M., Simonsen, M. E., & Muff, J. (2020). Synthesis of an iron-graphene based particle electrode for pesticide removal in three-dimensional heterogeneous electro-Fenton water treatment system. Chemical Engineering Journal, 395, 125025. https://doi.org/10.1016/j.cej.2020.125025
  • Hasani, K., Peyghami, A., Moharrami, A., Vosoughi, M., & Dargahi, A. (2020). The efficacy of sono-electro-Fenton process for removal of Cefixime antibiotic from aqueous solutions by response surface methodology (RSM) and evaluation of toxicity of effluent by microorganisms. Arabian Journal of Chemistry, 13(7), 6122–6139. https://doi.org/10.1016/j.arabjc.2020.05.012
  • He, Y., Chen, K., Leung, M. K. H., Zhang, Y., Li, L., Li, G., Xuan, J., & Li, J. (2022). Photocatalytic fuel cell – A review. Chemical Engineering Journal, 428, 131074. https://doi.org/10.1016/j.cej.2021.131074
  • Heidari, Z., Pelalak, R., Alizadeh, R., Oturan, N., Shirazian, S., & Oturan, M. A. (2021). Application of mineral iron-based natural catalysts in electro-Fenton process: A comparative study. Catalysts, 11(1), 57. https://doi.org/10.3390/catal11010057
  • Jayashree, S., Ramesh, S. T., Lavanya, A., Gandhimathi, R., & Nidheesh, P. V. (2019). Wastewater treatment by microbial fuel cell coupled with peroxicoagulation process. Clean Technologies and Environmental Policy, 21(10), 2033–2045. https://doi.org/10.1007/s10098-019-01759-0
  • Jia, S., Han, H., Hou, B., & Zhuang, H. (2015). Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of three-dimensional catalytic electro-Fenton and membrane bioreactor. Bioresource Technology, 198, 918–921. https://doi.org/10.1016/j.biortech.2015.09.080
  • Jiao, Y., Ma, L., Tian, Y., & Zhou, M. (2020). A flow-through electro-Fenton process using modified activated carbon fiber cathode for orange II removal. Chemosphere, 252, 126483. https://doi.org/10.1016/j.chemosphere.2020.126483
  • Keller, R. G., Weyand, J., Vennekoetter, J.-B., Kamp, J., & Wessling, M. (2021). An electro-Fenton process coupled with nanofiltration for enhanced conversion of cellobiose to glucose. Catalysis Today, 364, 230–241. https://doi.org/10.1016/j.cattod.2020.05.059
  • Kourdali, S., Badis, A., Boucherit, A., Boudjema, K., & Saiba, A. (2018). Electrochemical disinfection of bacterial contamination: Effectiveness and modeling study of E. coli inactivation by electro-Fenton, electro-peroxi-coagulation and electrocoagulation. Journal of Environmental Management, 226, 106–119. https://doi.org/10.1016/j.jenvman.2018.08.038
  • Krishnan, S., Martínez-Huitle, C. A., & Nidheesh, P. V. (2022). An overview of chelate modified electro-Fenton processes. Journal of Environmental Chemical Engineering, 10(2), 107183. https://doi.org/10.1016/j.jece.2022.107183
  • Kumar, A., Nidheesh, P. V., & Kumar, M. S. (2018). Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes. Chemosphere, 205, 587–593. https://doi.org/10.1016/j.chemosphere.2018.04.141
  • Kumar, A., & Pan, S.-Y. (2020). Opportunities and challenges of electrochemical water treatment integrated with renewable energy at the water-energy nexus. Water-Energy Nexus. 3, 110–116. https://doi.org/10.1016/j.wen.2020.03.006
  • Li, D., Zheng, T., Liu, Y., Hou, D., Yao, K. K., Zhang, W., Song, H., He, H., Shi, W., Wang, L., & Ma, J. (2020). A novel Electro-Fenton process characterized by aeration from inside a graphite felt electrode with enhanced electrogeneration of H2O2 and cycle of Fe3+/Fe2+. Journal of Hazardous Materials, 396, 122591. https://doi.org/10.1016/j.jhazmat.2020.122591
  • Li, Z., Shen, C., Liu, Y., Ma, C., Li, F., Yang, B., Huang, M., Wang, Z., Dong, L., & Wolfgang, S. (2020). Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton. Applied Catalysis B: Environmental, 260, 118204. https://doi.org/10.1016/j.apcatb.2019.118204
  • Liu, M., Feng, Z., Luan, X., Chu, W., Zhao, H., & Zhao, G. (2021). Accelerated Fe2+ regeneration in an effective electro-fenton process by boosting internal electron transfer to a nitrogen-conjugated Fe(III) complex. Environmental Science & Technology, 55(9), 6042–6051. https://doi.org/10.1021/acs.est.0c08018
  • Liu, F., Liu, Y., Yao, Q., Wang, Y., Fang, X., Shen, C., Li, F., Huang, M., Wang, Z., Sand, W., & Xie, J. (2020a). Supported atomically-precise gold nanoclusters for enhanced flow-through electro-Fenton. Environmental Science & Technology, 54(9), 5913–5921. https://doi.org/10.1021/acs.est.0c00427
  • Liu, F., Oturan, N., Zhang, H., & Oturan, M. A. (2020b). Soil washing in combination with electrochemical advanced oxidation for the remediation of synthetic soil heavily contaminated with diesel. Chemosphere, 249, 126176. https://doi.org/10.1016/j.chemosphere.2020.126176
  • Liu, X. C., He, C. S., Shen, Z. Y., Li, W. Q., Chen, N., Song, J. S., Zhou, Y. G., & Mu, Y. (2020). Mechanistic study of Fe(III) chelate reduction in a neutral electro-Fenton process. Applied Catalysis B: Environmental, 278, 119347. https://doi.org/10.1016/j.apcatb.2020.119347
  • Lu, M. (2021). Advanced treatment of aged landfill leachate through the combination of aged-refuse bioreactor and three-dimensional electrode electro-Fenton process. Environmental Technology, 42(11), 1669–1678. https://doi.org/10.1080/09593330.2019.1677781
  • Ma, L., Zhou, M. H., Ren, G. B., Yang, W. L., & Liang, L. (2016). A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation. Electrochimica Acta, 200, 222–230. https://doi.org/10.1016/j.electacta.2016.03.181
  • Mailler, R., Gasperi, J., Coquet, Y., Buleté, A., Vulliet, E., Deshayes, S., Zedek, S., Mirande-Bret, C., Eudes, V., Bressy, A., Caupos, E., Moilleron, R., Chebbo, G., & Rocher, V. (2016). Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale. The Science of the Total Environment, 542(Pt A), 983–996. https://doi.org/10.1016/j.scitotenv.2015.10.153
  • Martínez-Huitle, C. A., & Brillas, E. (2021). A critical review over the electrochemical disinfection of bacteria in synthetic and real wastewaters using a boron-doped diamond anode. Current Opinion in Solid State and Materials Science, 25(4), 100926. https://doi.org/10.1016/j.cossms.2021.100926
  • Matsunaga, T., Okochi, M., Takahashi, M., Nakayama, T., Wake, H., & Nakamura, N. (2000). TiN electrode reactor for disinfection of drinking water. Water Research, 34(12), 3117–3122. https://doi.org/10.1016/S0043-1354(00)00066-X
  • Menon, P., Anantha Singh, T. S., Pani, N., & Nidheesh, P. V. (2021). Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater. Chemosphere, 269, 128739. https://doi.org/10.1016/j.chemosphere.2020.128739
  • Midassi, S., Bedoui, A., & Bensalah, N. (2020). Efficient degradation of chloroquine drug by electro-Fenton oxidation: Effects of operating conditions and degradation mechanism. Chemosphere, 260, 127558. https://doi.org/10.1016/j.chemosphere.2020.127558
  • Moraleda, I., Oturan, N., Saez, C., Llanos, J., Rodrigo, M. A., & Oturan, M. A. (2020). A comparison between flow-through cathode and mixed tank cells for the electro-Fenton process with conductive diamond anode. Chemosphere, 238, 124854. https://doi.org/10.1016/j.chemosphere.2019.124854
  • Mousset, E., & Dionysiou, D. D. (2020). Photoelectrochemical reactors for treatment of water and wastewater: A review. Environmental Chemistry Letters, 18(4), 1301–1318. https://doi.org/10.1007/s10311-020-01014-9
  • Mousset, E., Loh, W. H., Lim, W. S., Jarry, L., Wang, Z., & Lefebvre, O. (2021). Cost comparison of advanced oxidation processes for wastewater treatment using accumulated oxygen-equivalent criteria. Water Research, 200, 117234. https://doi.org/10.1016/j.electacta.2021.138466
  • Mousset, E., Oturan, N., & Oturan, M. A. (2018). An unprecedented route of [rad]OH radical reactivity evidenced by an electrocatalytical process: Ipso-substitution with perhalogenocarbon compounds. Applied Catalysis B: Environmental, 226, 135–146. https://doi.org/10.1016/j.apcatb.2017.12.028
  • Mousset, E., Quackenbush, L., Schondek, C., Gerardin-Vergne, A., Pontvianne, S., Kmiotek, S., & Pons, M. N. (2020). Effect of homogeneous Fenton combined with electron transfer on the fate of inorganic chlorinated species in synthetic and reclaimed municipal wastewater. Electrochimica Acta, 334, 135608. https://doi.org/10.1016/j.electacta.2019.135608
  • Nazari, R., Rajić, L., Xue, Y., Zhou, W., & Alshawabkeh, A. N. (2018). Degradation of 4-chlorophenol in aqueous solution by sono-electro-Fenton process. International Journal of Electrochemical Science, 13(9), 9214–9230. https://doi.org/10.20964/2018.09.46
  • Nidheesh, P. V. (2015). Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: A review. RSC Advances, 5(51), 40552–40577. https://doi.org/10.1039/C5RA02023A
  • Nidheesh, P. V. (2018). Removal of organic pollutants by peroxicoagulation. Environmental Chemistry Letters, 16(4), 1283–1292. https://doi.org/10.1007/s10311-018-0752-5
  • Nidheesh, P. V., Couras, C., Karim, A. V., & Nadais, H. (2022). A review of integrated advanced oxidation processes and biological processes for organic pollutant removal. Chemical Engineering Communications, 209(3), 390–432. https://doi.org/10.1080/00986445.2020.1864626
  • Nidheesh, P. V., & Gandhimathi, R. (2012). Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination, 299, 1–15. https://doi.org/10.1016/j.desal.2012.05.011
  • Nidheesh, P. V., & Gandhimathi, R. (2014). Electrolytic removal of Rhodamine B from aqueous solution by peroxicoagulation process. Environmental Science and Pollution Research International, 21(14), 8585–8594. https://doi.org/10.1007/s11356-014-2775-1
  • Nidheesh, P. V., Gandhimathi, R., & Ramesh, S. T. (2013). Degradation of dyes from aqueous solution by Fenton processes: A review. Environmental Science and Pollution Research International, 20(4), 2099–2132. https://doi.org/10.1007/s11356-012-1385-z
  • Nidheesh, P. V., Gandhimathi, R., Velmathi, S., & Sanjini, N. S. (2014). Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution. RSC Advances, 4(11), 5698–5708. https://doi.org/10.1039/c3ra46969g
  • Nidheesh, P. V., Syam Babu, D., Dasgupta, B., Behara, P., Ramasamy, B., & Suresh Kumar, M. (2020). Treatment of arsenite‐contaminated water by electrochemical advanced oxidation processes. ChemElectroChem, 7(11), 2418–2423. https://doi.org/10.1002/celc.202000549
  • Nidheesh, P. V., Zhou, M. H., & Oturan, M. A. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197, 210–227. https://doi.org/10.1016/j.chemosphere.2017.12.195
  • Nordin, N., Ho, L.-N., Ong, S.-A., Ibrahim, A. H., Wong, Y.-S., Lee, S.-L., Oon, Y.-S., & Oon, Y.-L. (2017). Hybrid system of photocatalytic fuel cell and Fenton process for electricity generation and degradation of Reactive Black 5. Separation and Purification Technology, 177, 135–141. https://doi.org/10.1016/j.seppur.2016.12.030
  • Olvera-Vargas, H., Cocerva, T., Oturan, N., Buisson, D., & Oturan, M. A. (2016a). Bioelectro-Fenton: A sustainable integrated process for removal of organic pollutants from water: Application to mineralization of metoprolol. Journal of Hazardous Materials, 319, 13–23. https://doi.org/10.1016/j.jhazmat.2015.12.010
  • Olvera-Vargas, H., Dubuc, J., Wang, Z., Coudert, L., Neculita, C. M., & Lefebvre, O. (2021a). Electro-Fenton beyond the degradation of organics: Treatment of thiosalts in contaminated mine water. Environmental Science & Technology, 55(4), 2564–2574. https://doi.org/10.1021/acs.est.0c06006
  • Olvera-Vargas, H., Gore-Datar, N., Garcia-Rodriguez, O., Mutnuri, S., & Lefebvre, O. (2021b). Electro-Fenton treatment of real pharmaceutical wastewater paired with a BDD anode: Reaction mechanisms and respective contribution of homogeneous and heterogeneous •OH. Chemical Engineering Journal, 404, 126524. https://doi.org/10.1016/j.cej.2020.126524
  • Olvera-Vargas, H., Oturan, N., Buisson, D., & Oturan, M. A. (2016b). A coupled Bio-EF process for mineralization of the pharmaceuticals Furosemide and Ranitidine: Feasibility assessment. Chemosphere, 155, 606–613. https://doi.org/10.1016/j.chemosphere.2016.04.091
  • Olvera-Vargas, H., Wee, V. Y. H., Garcia-Rodriguez, O., & Lefebvre, O. (2019a). Near-neutral electro-Fenton treatment of pharmaceutical pollutants: Effect of using a triphosphate ligand and BDD Electrode. ChemElectroChem, 6(3), 937–946. https://doi.org/10.1002/celc.201801732
  • Olvera-Vargas, H., Zheng, X., Garcia-Rodriguez, O., & Lefebvre, O. (2019b). Sequential “electrochemical peroxidation – Electro-Fenton” process for anaerobic sludge treatment. Water Research, 154, 277–286. https://doi.org/10.1016/j.watres.2019.01.063
  • Orimolade, B. O., Zwane, B. N., Koiki, B. A., Rivallin, M., Bechelany, M., Mabuba, N., Lesage, G., Cretin, M., & Arotiba, O. A. (2020). Coupling cathodic electro-Fenton with anodic photo-electrochemical oxidation: A feasibility study on the mineralization of paracetamol. Journal of Environmental Chemical Engineering, 8(5), 104394. https://doi.org/10.1016/j.jece.2020.104394
  • Ortiz de la Plata, G. B., Alfano, O. M., & Cassano, A. E. (2010). Decomposition of 2-chlorophenol employing goethite as Fenton catalyst. I. Proposal of a feasible, combined reaction scheme of heterogeneous and homogeneous reactions. Applied Catalysis B: Environmental, 95(1–2), 1–13. https://doi.org/10.1016/j.apcatb.2009.12.005
  • Oturan, M. A. (2000). Ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D. Journal of Applied Electrochemistry, 30(4), 475–482. https://doi.org/10.1023/A:1003994428571
  • Oturan, M. A., & Aaron, J.-J. (2014). Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44(23), 2577–2641. https://doi.org/10.1080/10643389.2013.829765
  • Oturan, M. A., Peiroten, J., Chartrin, P., & Acher, A. J. (2000). Complete destruction of p-Nitrophenol in aqueous medium by electro-Fenton method. Environmental Science & Technology, 34(16), 3474–3479. https://doi.org/10.1021/es990901b
  • Oturan, M. A., Sirés, I., Oturan, N., Pérocheau, S., Laborde, J. L., & Trévin, S. (2008). Sonoelectro-Fenton process: A novel hybrid technique for the destruction of organic pollutants in water. Journal of Electroanalytical Chemistry, 624(1–2), 329–332. https://doi.org/10.1016/j.jelechem.2008.08.005
  • Oturan, N., van Hullebusch, E. D., Zhang, H., Mazeas, L., Budzinski, H., Le Menach, K., & Oturan, M. A. (2015). Occurrence and removal of organic micropollutants in landfill leachates treated by electrochemical advanced oxidation processes. Environmental Science & Technology, 49(20), 12187–12196. https://doi.org/10.1021/acs.est.5b02809
  • Oturan, N., Wu, J., Zhang, H., Sharma, V. K., & Oturan, M. A. (2013). Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: Effect of electrode materials. Applied Catalysis B: Environmental, 140–141, 92–97. https://doi.org/10.1016/j.apcatb.2013.03.035
  • Pérez, J. F., Llanos, J., Sáez, C., López, C., Cañizares, P., & Rodrigo, M. A. (2017). The aerator as oxygen supplier for the electrochemical generation of H2O2. Electrochimica Acta, 246, 466–474. https://doi.org/10.1016/j.electacta.2017.06.085
  • Pérez, J. F., Llanos, J., Sáez, C., López, C., Cañizares, P., & Rodrigo, M. A. (2018). The pressurized jet aerator: A new aeration system for high-performance H2O2 electrolyzers. Electrochemistry Communications, 89, 19–22. https://doi.org/10.1016/j.elecom.2018.02.012
  • Pérez, T., Coria, G., Sirés, I., Nava, J. L., & Uribe, A. R. (2018). Electrosynthesis of hydrogen peroxide in a filter-press flow cell using graphite felt as air-diffusion cathode. Journal of Electroanalytical Chemistry, 812, 54–58. https://doi.org/10.1016/j.jelechem.2018.01.054
  • Petrucci, E., Da Pozzo, A., & Di Palma, L. (2016). On the ability to electrogenerate hydrogen peroxide and to regenerate ferrous ions of three selected carbon-based cathodes for electro-Fenton processes. Chemical Engineering Journal, 283, 750–758. https://doi.org/10.1016/j.cej.2015.08.030
  • Popat, A., Nidheesh, P. V., Anantha Singh, T. S., & Suresh Kumar, M. (2019). Mixed industrial wastewater treatment by combined electrochemical advanced oxidation and biological processes. Chemosphere, 237, 124419. https://doi.org/10.1016/j.chemosphere.2019.124419
  • Ren, G., Zhou, M. H., Su, P., Yang, W., Lu, X., & Zhang, Y. (2019). Simultaneous sulfadiazines degradation and disinfection from municipal secondary effluent by a flow-through electro-Fenton process with graphene-modified cathode. Journal of Hazardous Materials, 368, 830–839. https://doi.org/10.1016/j.jhazmat.2019.01.109
  • Robles, I., Becerra, E., Barrios, J. A., Maya, C., Jiménez, B., Rodríguez-Valadez, F. J., Rivera, F., García-Espinoza, J. D., & Godínez, L. A. (2020a). Inactivation of helminth eggs in an electro-Fenton reactor: Towards full electrochemical disinfection of human waste using activated carbon. Chemosphere, 250, 126260. https://doi.org/10.1016/j.chemosphere.2020.126260
  • Robles, I., Moreno-Rubio, G., García-Espinoza, J. D., Martínez-Sánchez, C., Rodríguez, A., Meas-Vong, Y., Rodríguez-Valadez, F. J., & Godínez, L. A. (2020b). Study of polarized activated carbon filters as simultaneous adsorbent and 3D-type electrode materials for electro-Fenton reactors. Journal of Environmental Chemical Engineering, 8(5), 104414. https://doi.org/10.1016/j.jece.2020.104414
  • Salazar, R., Gallardo-Arriaza, J., Vidal, J., Rivera-Vera, C., Toledo-Neira, C., Sandoval, M. A., Cornejo-Ponce, L., & Thiam, A. (2019). Treatment of industrial textile wastewater by the solar photoelectro-Fenton process: Influence of solar radiation and applied current. Solar Energy, 190, 82–91. https://doi.org/10.1016/j.solener.2019.07.072
  • Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109
  • Santos, J. E. L., Da Silva, D. R., Martínez-Huitle, C. A., Dos Santos, E. V., & Quiroz, M. A. (2020). Cathodic hydrogen production by simultaneous oxidation of methyl red and 2,4-dichlorophenoxyacetate in aqueous solutions using PbO2, Sb-doped SnO2 and Si/BDD anodes. RSC Advances, 10(62), 37947–37955. https://doi.org/10.1039/d0ra03954c
  • Santos, G., de, O. S., Eguiluz, K. I. B., Salazar-Banda, G. R., Saez, C., & Rodrigo, M. A. (2020). Testing the role of electrode materials on the electro-Fenton and photoelectro-Fenton degradation of clopyralid. Journal of Electroanalytical Chemistry, 871, 114291. https://doi.org/10.1016/j.jelechem.2020.114291
  • Scaria, J., Gopinath, A., & Nidheesh, P. V. (2021). A versatile strategy to eliminate emerging contaminants from the aqueous environment: Heterogeneous Fenton process. Journal of Cleaner Production, 278, 124014. https://doi.org/10.1016/j.jclepro.2020.124014
  • Scialdone, O., Galia, A., Gattuso, C., Sabatino, S., & Schiavo, B. (2015). Effect of air pressure on the electro-generation of H2O2 and the abatement of organic pollutants in water by electro-Fenton process. Electrochimica Acta, 182, 775–780. https://doi.org/10.1016/j.electacta.2015.09.109
  • Sirés, I., & Brillas, E. (2012). Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environment International, 40, 212–229. https://doi.org/10.1016/j.envint.2011.07.012
  • Sirés, I., & Brillas, E. (2021). Upgrading and expanding the electro-Fenton and related processes. Current Opinion in Electrochemistry, 27, 100686. https://doi.org/10.1016/j.coelec.2020.100686
  • Song, G., Zhou, M., Du, X., Su, P., & Guo, J. (2021). Mechanistic insight into the heterogeneous electro-Fenton/sulfite process for ultraefficient degradation of pollutants over a wide pH range. ACS ES&T Water, 1(7), 1637–1647. https://doi.org/10.1021/acsestwater.1c00123
  • Sopaj, F., Oturan, N., Pinson, J., Podvorica, F. I., & Oturan, M. A. (2020). Effect of cathode material on electro-Fenton process efficiency for electrocatalytic mineralization of the antibiotic sulfamethazine. Chemical Engineering Journal, 384(October), 123249. https://doi.org/10.1016/j.cej.2019.123249
  • Srivastava, V., Suresh Kumar, M., Nidheesh, P. V., & Martínez-Huitle, C. A. (2021). Electro catalytic generation of reactive species at diamond electrodes and applications in microbial inactivation. Current Opinion in Electrochemistry, 30, 100849. https://doi.org/10.1016/j.coelec.2021.100849
  • Su, P., Zhou, M., Ren, G., Lu, X., Du, X., & Song, G. (2019). A carbon nanotube-confined iron modified cathode with prominent stability and activity for heterogeneous electro-Fenton reactions. Journal of Materials Chemistry A, 7(42), 24408–24419. https://doi.org/10.1039/C9TA07491K
  • Thanapimmetha, A., Srinophakun, P., Amat, S., & Saisriyoot, M. (2017). Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process. Journal of Environmental Chemical Engineering, 5(3), 2305–2312. https://doi.org/10.1016/j.jece.2017.04.030
  • Tian, M., Zhang, D., Wang, M., Zhu, Y., Chen, C., Chen, Y., Jiang, T., & Gao, S. (2020). Engineering flexible 3D printed triboelectric nanogenerator to self-power electro-Fenton degradation of pollutants. Nano Energy, 74, 104908. https://doi.org/10.1016/j.nanoen.2020.104908
  • Tian, Q., Xiao, F., Zhao, H., Fei, X., Shen, X., Postole, G., & Zhao, G. (2020). Simultaneously accelerating the regeneration of FeII and the selectivity of 2e- oxygen reduction over sulfide iron-based carbon aerogel in electro-Fenton system. Applied Catalysis B: Environmental, 272, 119039. https://doi.org/10.1016/j.apcatb.2020.119039
  • Titchou, F. E., Zazou, H., Afanga, H., El Gaayda, J., Ait Akbour, R., Hamdani, M., & Oturan, M. A. (2022). Comparative study of the removal of Direct Red 23 by anodic oxidation, electro-Fenton, photo-anodic oxidation and photoelectro-Fenton in chloride and sulfate media. Environmental Research, 204, 112353. https://doi.org/10.1016/j.envres.2021.112353
  • Tran, N. H., & Gin, K. Y. H. (2017). Occurrence and removal of pharmaceuticals, hormones, personal care products, and endocrine disrupters in a full-scale water reclamation plant. Science of the Total Environment, 599–600, 1503–1516. https://doi.org/10.1016/j.scitotenv.2017.05.097
  • Trellu, C., Chakraborty, S., Nidheesh, P. V., & Oturan, M. A. (2019). Environmental applications of boron‐doped diamond electrodes: 2. Soil remediation and sensing applications. ChemElectroChem, 6(8), 2143–2156. https://doi.org/10.1002/celc.201801877
  • Trellu, C., Gibert-Vilas, M., Pechaud, Y., Oturan, N., & Oturan, M. A. (2021). Clofibric acid removal at activated carbon fibers by adsorption and electro-Fenton regeneration – Modeling and limiting phenomena. Electrochimica Acta, 382, 138283. https://doi.org/10.1016/j.electacta.2021.138283
  • Trellu, C., Oturan, N., Keita, F. K., Fourdrin, C., Pechaud, Y., & Oturan, M. A. (2018). Regeneration of activated carbon fiber by the electro-Fenton process. Environmental Science & Technology, 52(13), 7450–7457. https://doi.org/10.1021/acs.est.8b01554
  • Trellu, C., Rivallin, M., Cerneaux, S., Coetsier, C., Causserand, C., Oturan, M. A., & Cretin, M. (2020). Integration of sub-stoichiometric titanium oxide reactive electrochemical membrane as anode in the electro-Fenton process. Chemical Engineering Journal, 400, 125936. https://doi.org/10.1016/j.cej.2020.125936
  • Trojanowicz, M., Bojanowska-Czajka, A., Bartosiewicz, I., & Kulisa, K. (2018). Advanced Oxidation/Reduction Processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) – A review of recent advances. Chemical Engineering Journal, 336, 170–199. https://doi.org/10.1016/j.cej.2017.10.153
  • Valero, P., Verbel, M., Silva-Agredo, J., Mosteo, R., Ormad, M. P., & Torres-Palma, R. A. (2017). Electrochemical advanced oxidation processes for Staphylococcus aureus disinfection in municipal WWTP effluents. Journal of Environmental Management, 198(Pt 1), 256–265. https://doi.org/10.1016/j.jenvman.2017.04.070
  • Venu, D., Gandhimathi, R., Nidheesh, P. V., & Ramesh, S. T. (2016). Effect of solution pH on leachate treatment mechanism of peroxicoagulation process. Journal of Hazardous, Toxic, and Radioactive Waste, 20(3), 4–7. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000315
  • Wang, H., Wang, Y., Zhang, J., Liu, X., & Tao, S. (2021). Electronic structure engineering through Fe-doping CoP enables hydrogen evolution coupled with electro-Fenton. Nano Energy. 84, 105943. https://doi.org/10.1016/j.nanoen.2021.105943
  • Wang, Q., Liu, M., Zhao, H., Chen, Y., Xiao, F., Chu, W., & Zhao, G. (2019). Efficiently degradation of perfluorooctanoic acid in synergic electrochemical process combining cathodic electro-Fenton and anodic oxidation. Chemical Engineering Journal, 378, 122071. https://doi.org/10.1016/j.cej.2019.122071
  • Wang, W., Li, Y., Li, Y., Zhou, M., & Arotiba, O. A. (2020). Electro-Fenton and photoelectro-Fenton degradation of sulfamethazine using an active gas diffusion electrode without aeration. Chemosphere, 250, 126177. https://doi.org/10.1016/j.chemosphere.2020.126177
  • Wang, Y., Zhao, M., Hou, C., Chen, W., Li, S., Ren, R. K., & Li, Z. (2021). Efficient degradation of perfluorooctanoic acid by solar photo-electro-Fenton like system fabricated by MOFs/carbon nanofibers composite membrane. Chemical Engineering Journal, 414, 128940. https://doi.org/10.1016/j.cej.2021.128940
  • Xia, G., Lu, Y., & Xu, H. (2015). Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrilonitrile-based carbon fiber bruch cathode. Electrochimica Acta, 158, 390–396. https://doi.org/10.1016/j.electacta.2015.01.102
  • Xiao, Y., & Hill, J. M. (2019). Mechanistic insights for the electro-Fenton regeneration of carbon materials saturated with methyl orange: Dominance of electrodesorption. Journal of Hazardous Materials, 367, 59–67. https://doi.org/10.1016/j.jhazmat.2018.12.066
  • Xu, P., Xu, H., & Shi, Z. (2018). A novel bio-electro-Fenton process with FeVO4/CF cathode on advanced treatment of coal gasification wastewater. Separation and Purification Technology, 194, 457–461. https://doi.org/10.1016/j.seppur.2017.11.073
  • Yang, Y., Qiao, S., Zhou, J., & Quan, X. (2020). Mitigating membrane fouling based on in situ •OH generation in a novel electro-Fenton membrane bioreactor. Environmental Science & Technology, 54(12), 7669–7676. https://doi.org/10.1021/acs.est.0c01428
  • Ye, Z., Brillas, E., Centellas, F., Cabot, P. L., & Sirés, I. (2020). Expanding the application of photoelectro-Fenton treatment to urban wastewater using the Fe(III)-EDDS complex. Water Research, 169, 115219. https://doi.org/10.1016/j.watres.2019.115219
  • Yu, F., Chen, Y., Pan, Y., Yang, Y., & Ma, H. (2020). A cost-effective production of hydrogen peroxide via improved mass transfer of oxygen for electro-Fenton process using the vertical flow reactor. Separation and Purification Technology, 241, 116695. https://doi.org/10.1016/j.seppur.2020.116695
  • Zahrani, A. A., & Ayati, B. (2020a). Improving Fe-based heterogeneous Electro-Fenton nano catalyst using transition metals in a novel orbiting electrodes reactor. Chemosphere, 256, 127049. https://doi.org/10.1016/j.chemosphere.2020.127049
  • Zahrani, A. A., & Ayati, B. (2020b). Using heterogeneous Fe-ZSM-5 nanocatalyst to improve the electro Fenton process for acid blue 25 removal in a novel reactor with orbiting electrodes. Journal of Electroanalytical Chemistry, 873(15), 114456. https://doi.org/10.1016/j.jelechem.2020.114456
  • Zhang, Q., Zhou, M. H., Lang, Z., Du, X., Cai, J., & Han, L. (2021b). Dual strategies to enhance mineralization efficiency in innovative electrochemical advanced oxidation processes using natural air diffusion electrode: Improving both H2O2 production and utilization efficiency. Chemical Engineering Journal, 413(1), 127564. https://doi.org/10.1016/j.cej.2020.127564
  • Zhang, Q., Zhou, M., Ren, G., Li, Y., Li, Y., & Du, X. (2020). Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion. Nature Communications, 11(1), 1731. https://doi.org/10.1038/s41467-020-15597-y
  • Zhang, S., Zhang, Z., Ge, M., Liu, B., Chen, S., Zhang, D., & Gao, L. (2021a). Converting lignin into long‐chain fatty acids with the electro‐Fenton reaction. GCB Bioenergy, 13(8), 1290–1302. https://doi.org/10.1111/gcbb.12859
  • Zhang, Y., Wang, A., Tian, X., Wen, Z., Lv, H., Li, D., & Li, J. (2016). Efficient mineralization of the antibiotic trimethoprim by solar assisted photoelectro-Fenton process driven by a photovoltaic cell. Journal of Hazardous Materials, 318, 319–328. https://doi.org/10.1016/j.jhazmat.2016.07.021
  • Zhang, Y., & Zhou, M. H. (2019). A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. Journal of Hazardous Materials, 362, 436–450. https://doi.org/10.1016/j.jhazmat.2018.09.035
  • Zhao, K., Zeng, Q., Bai, J., Li, J., Xia, L., Chen, S., & Zhou, B. (2017). Enhanced organic pollutants degradation and electricity production simultaneously via strengthening the radicals reaction in a novel Fenton-photocatalytic fuel cell system. Water Research, 108, 293–300. https://doi.org/10.1016/j.watres.2016.11.002
  • Zhou, M. H., Oturan, M. A., & Sirés, I. (2018). Electro-Fenton process: New trends and scale-up. In The handbook of environmental chemistry, vol. 61. Springer.
  • Zhou, W., Xie, L., Gao, J., Nazari, R., Zhao, H., Meng, X., Sun, F., Zhao, G., & Ma, J. (2021). Selective H2O2 electrosynthesis by O-doped and transition-metal-O-doped carbon cathodes via O2 electroreduction: A critical review. Chemical Engineering Journal, 410, 128368. https://doi.org/10.1016/j.cej.2020.128368
  • Zhu, X., & Logan, B. E. (2013). Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment. Journal of Hazardous Materials, 252–253, 198–203. https://doi.org/10.1016/j.jhazmat.2013.02.051
  • Zhuang, L., Zhou, S., Yuan, Y., Liu, M., & Wang, Y. (2010). A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation. Chemical Engineering Journal, 163(1–2), 160–163. https://doi.org/10.1016/j.cej.2010.07.039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.