1,887
Views
4
CrossRef citations to date
0
Altmetric
Invited Review

Nanoconfinement in advanced oxidation processes

ORCID Icon, , , , &
Pages 1197-1228 | Published online: 25 Nov 2022
 

Abstract

Advanced oxidation processes (AOPs) based on the generation of reactive radicals are widely accepted to be effective technologies for mineralizing refractory organic contaminants or pretreating bio-recalcitrant compounds. The efficiencies of AOPs suffer from the low availability of ultrashort lifetime radicals due to their rapid self-quenching, mass transfer and nonselective limitations. Heterogeneous AOPs are hampered due to the declining activity and stability of catalysts resulting from aggregation, leakage and poisoning. The effectiveness, selectivity and reactivity of highly reactive species of AOPs can be greatly enhanced when the oxidation reactions are conducted in confined nanospaces. The stability, accessibility, variety and activity of nanoconfined catalysts would be improved by confining the nanoparticle catalysts inside porous scaffolds or substrates. Other confined systems, such as surface confinement, quantum confinement and electron confinement, have also been applied in different AOPs to improve the contaminant degradation performance. The above-mentioned nanoconfinement applications in AOPs are systematically summarized in this critical review. Prospects and challenges are presented to stimulate future interest and breakthroughs for nanoconfinement in AOPs.

GRAPHICAL ABSTRACT

HANDLING EDITORS:

Additional information

Funding

This work was supported by the National Key R & D Program of China (2021YFC3200101, 2018YFD0900805) and the Beijing Natural Science Foundation (8202029).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.