1,887
Views
4
CrossRef citations to date
0
Altmetric
Invited Review

Nanoconfinement in advanced oxidation processes

ORCID Icon, , , , &
Pages 1197-1228 | Published online: 25 Nov 2022

References

  • Ali, J., Shahzad, A., Wang, J., Ifthikar, J., Lei, W., Aregay, G. G., Chen, Z., & Chen, Z. (2021). Modulating the redox cycles of homogenous Fe(III)/PMS system through constructing electron rich thiomolybdate centres in confined layered double hydroxides. Chemical Engineering Journal and the Biochemical Engineering Journal, 408, 127242. https://doi.org/10.1016/j.cej.2020.127242
  • Asif, M. B., Zhang, S., Qiu, L., & Zhang, Z. (2022). Ultrahigh-permeance functionalized boron nitride membrane for nanoconfined heterogeneous catalysis. Chem Catalysis, 2(3), 550–562. https://doi.org/10.1016/j.checat.2022.01.003
  • Bao, Y., Tian, M., Lua, S. K., Lim, T.-T., Wang, R., & Hu, X. (2020). Spatial confinement of cobalt crystals in carbon nanofibers with oxygen vacancies as a high-efficiency catalyst for organics degradation. Chemosphere, 245, 125407. https://doi.org/10.1016/j.chemosphere.2019.125407
  • Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Gumfekar, S. P. (2016). Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chemical Engineering Process, 109, 178–189. https://doi.org/10.1016/j.cep.2016.08.016
  • Bhattacharjee, A., & Ahmaruzzaman, M. (2015). A novel and green process for the production of tin oxide quantum dots and its application as a photocatalyst for the degradation of dyes from aqueous phase. Journal of Colloid and Interface Science, 448, 130–139. https://doi.org/10.1016/j.jcis.2015.01.083
  • Bhattacharjee, A., Ahmaruzzaman, M., & Sinha, T. (2015). A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 751–760. https://doi.org/10.1016/j.saa.2014.09.092
  • Chen, C., Zhou, L.-L., Huang, Y.-N., Wang, W.-K., & Xu, J. (2022a). Boron regulates catalytic sites of biochar to enhance the formation of surface-confined complex for improved peroxydisulfate activation. Chemosphere, 301, 134690. https://doi.org/10.1016/j.chemosphere.2022.134690
  • Chen, F., Liu, L.-L., Wu, J.-H., Rui, X.-H., Chen, J.-J., & Yu, Y. (2022b). Single-atom iron anchored tubular g-C3N4 catalysts for ultrafast Fenton-like reaction: Roles of high-valency iron-oxo species and organic radicals. Advanced Materials, 34(31), 2202891. https://doi.org/10.1002/adma.202202891
  • Chen, F., Tang, D., Wang, Y., Li, T., & Ma, J. (2020). Integration of homogeneous and heterogeneous advanced oxidation processes: Confined iron dancing with cyclodextrin polymer. Chemosphere, 250, 126226. https://doi.org/10.1016/j.chemosphere.2020.126226
  • Chen, L., Huang, Y., Zhou, M., Xing, K., Rao, L., Lv, W., & Yao, Y. (2021). Enhanced peroxymonosulfate activation process based on homogenously dispersed iron and nitrogen active sites on a three-dimensional porous carbon framework. Chemical Engineering Journal and the Biochemical Engineering Journal, 404, 126537. https://doi.org/10.1016/j.cej.2020.126537
  • Chen, X., Teng, W., Fan, J., Chen, Y., Ma, Q., Xue, Y., Zhang, C., & Zhang, W-x (2022c). Enhanced degradation of micropollutants over iron-based electro-Fenton catalyst: Cobalt as an electron modulator in mesochannels and mechanism insight. Journal of Hazardous Materials, 427, 127896. https://doi.org/10.1016/j.jhazmat.2021.127896
  • Chen, Y., Zhang, G., Liu, H., & Qu, J. (2019). Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes. Angewandte Chemie (International ed. in English), 58(24), 8134–8138. https://doi.org/10.1002/anie.201903531
  • Cui, J., Shao, S., Li, L., Zhang, P., Cui, J., Hu, C., & Zhao, Y. (2022). Nanoconfinement-regulated peroxymonosulfate activation via an anomalously efficient mediated electron-transfer pathway on cobalt. ACS ES&T Eng., (in press) https://doi.org/10.1021/acsestengg.2c00129
  • Cui, Z.-M., Chen, Z., Cao, C.-Y., Jiang, L., & Song, W.-G. (2013). A yolk–shell structured Fe2O3@mesoporous SiO2 nanoreactor for enhanced activity as a Fenton catalyst in total oxidation of dyes. Chemical Communications (Cambridge, England), 49(23), 2332–2334. https://doi.org/10.1039/c3cc38649j
  • Ding, R.-R., Li, W.-Q., He, C.-S., Wang, Y.-R., Liu, X.-C., Zhou, G.-N., & Mu, Y. (2021). Oxygen vacancy on hollow sphere CuFe2O4 as an efficient Fenton-like catalysis for organic pollutant degradation over a wide pH range. Applied Catalysis B: Environmental, 291, 120069. https://doi.org/10.1016/j.apcatb.2021.120069
  • Do, Q. C., Kim, D.-G., & Ko, S.-O. (2019). Controlled formation of magnetic yolk-shell structures with enhanced catalytic activity for removal of acetaminophen in a heterogeneous Fenton-like system. Environmental Research, 171, 92–100. https://doi.org/10.1016/j.envres.2019.01.019
  • Du, D., Shi, W., Wang, L., & Zhang, J. (2017). Yolk-shell structured Fe3O4@void@TiO2 as a photo-Fenton-like catalyst for the extremely efficient elimination of tetracycline. Applied Catalysis B: Environmental, 200, 484–492. https://doi.org/10.1016/j.apcatb.2016.07.043
  • Duan, P., Ma, T., Yue, Y., Li, Y., Zhang, X., Shang, Y., Gao, B., Zhang, Q., Yue, Q., & Xu, X. (2019). Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation. Environmental Science: Nano, 6(6), 1799–1811. https://doi.org/10.1039/C9EN00220K
  • Duan, P., Xu, X., Guo, K., Yue, Q., & Gao, B. (2022). Peroxymonosulfate activation on a chainmail catalyst via an electron shuttle mechanism for efficient organic pollutant removal. Applied Catalysis B: Environmental, 316, 121695. https://doi.org/10.1016/j.apcatb.2022.121695
  • Duan, X., Sun, H., Shao, Z., & Wang, S. (2018). Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied Catalysis B: Environmental, 224, 973–982. https://doi.org/10.1016/j.apcatb.2017.11.051
  • Duan, Y., Zhou, S., Deng, L., Shi, Z., Jiang, H., & Zhou, S. (2020). Enhanced photocatalytic degradation of sulfadiazine via g-C3N4/carbon dots nanosheets under nanoconfinement: Synthesis, biocompatibility and mechanism. Journal of Environmental Chemical Engineering, 8(6), 104612. https://doi.org/10.1016/j.jece.2020.104612
  • Ferreira-Neto, E. P., Ullah, S., da Silva, T. C. A., Domeneguetti, R. R., Perissinotto, A. P., de Vicente, F. S., Rodrigues-Filho, U. P., & Ribeiro, S. J. L. (2020). Bacterial nanocellulose/MoS2 hybrid aerogels as bifunctional adsorbent/photocatalyst membranes for in-flow water decontamination. ACS Applied Materials & Interfaces, 12(37), 41627–41643. https://doi.org/10.1021/acsami.0c14137
  • Fu, L., Zhao, Z., Ma, J., & Hu, X. (2015). Cavity-confined acceleration of iron cycle for the Fenton-like reaction by β-CD-benzoquinone host–guest complex under visible irradiation. Catalysis Communications, 65, 96–101. https://doi.org/10.1016/j.catcom.2015.02.012
  • Fu, X., Lin, Y., Yang, C., Wu, S., Wang, Y., & Li, X. (2022). Peroxymonosulfate activation via CoP nanoparticles confined in nitrogen-doped porous carbon for enhanced degradation of sulfamethoxazole in wastewater with high salinity. Journal of Environmental Chemical Engineering, 10(3), 107734. https://doi.org/10.1016/j.jece.2022.107734
  • Ge, J., Wang, X., Yao, H.-B., Zhu, H.-W., Peng, Y.-C., & Yu, S.-H. (2015). Durable Ag/AgCl nanowires assembled in a sponge for continuous water purification under sunlight. Materials Horizons, 2(5), 509–513. https://doi.org/10.1039/C5MH00069F
  • Glaze, W. H. (1987). Drinking-water treatment with ozone. Environmental Science & Technology, 21(3), 224–230. https://doi.org/10.1021/es00157a001
  • Grommet, A. B., Feller, M., & Klajn, R. (2020). Chemical reactivity under nanoconfinement. Nature Nanotechnology, 15(4), 256–271. https://doi.org/10.1038/s41565-020-0652-2
  • Guo, D., Jiang, S., Jin, L., Huang, K., Lu, P., & Liu, Y. (2022a). CNT encapsulated MnOx for enhanced flow-through electro-Fenton: The involvement of Mn(IV). Journal of Materials Chemistry A, 10(30), 15981–15989. https://doi.org/10.1039/D2TA03445J
  • Guo, D., Liu, Y., Ji, H., Wang, C.-C., Chen, B., Shen, C., Li, F., Wang, Y., Lu, P., & Liu, W. (2021). Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement. Environmental Science & Technology, 55(6), 4045–4053. https://doi.org/10.1021/acs.est.1c00349
  • Guo, D., Yao, Y., You, S., Jin, L., Lu, P., & Liu, Y. (2022b). Ultrafast degradation of micropollutants in water via electro-periodate activation catalyzed by nanoconfined Fe2O3. Applied Catalysis B: Environmental, 309, 121289. https://doi.org/10.1016/j.apcatb.2022.121289
  • Han, Y., Jiang, B., Zhang, C., Zhang, L., Zhang, L., Sun, Y., & Yang, N. (2022). Co@N-C nanocatalysts anchored in confined membrane pores for instantaneous pollutants degradation and antifouling via peroxymonosulfate activation. Journal of Water Process Engineering, 47, 102639. https://doi.org/10.1016/j.jwpe.2022.102639
  • He, H., Wang, Y., Li, J., Jiang, S., Sidra, S., Gong, W., Tang, Y., Hu, Y., Wei, R., Yang, D., Li, X., & Zhao, Z. (2022a). Confined conductive and light-adsorbed network in metal organic frameworks (MIL-88B(Fe)) with enhanced photo-Fenton catalytic activity for sulfamethoxazole degradation. Chemical Engineering Journal and the Biochemical Engineering Journal, 427, 131962. https://doi.org/10.1016/j.cej.2021.131962
  • He, Y., Wang, L., Chen, Z., Huang, X., Wang, X., Zhang, X., & Wen, X. (2022b). Novel catalytic ceramic membranes anchored with MnMe oxide and their catalytic ozonation performance towards atrazine degradation. Journal of Membrane Science, 648, 120362. https://doi.org/10.1016/j.memsci.2022.120362
  • Hodges, B. C., Cates, E. L., & Kim, J. H. (2018). Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nature Nanotechnology, 13(8), 642–650. https://doi.org/10.1038/s41565-018-0216-x
  • Hou, J., Lin, J., Fu, H., Wan, Y., Qu, X., Xu, Z., & Zheng, S. (2020). Vitamin B12 derived CoCNx composite confined in SBA-15 as highly effective catalyst to activate peroxymonosulfate for naproxen degradation. Chemical Engineering Journal and the Biochemical Engineering Journal, 389, 124344. https://doi.org/10.1016/j.cej.2020.124344
  • Huang, L.-Z., Zhou, C., Shen, M., Gao, E., Zhang, C., Hu, X.-M., Chen, Y., Xue, Y., & Liu, Z. (2020). Persulfate activation by two-dimensional MoS2 confining single Fe atoms: Performance, mechanism and DFT calculations. Journal of Hazardous Materials, 389, 122137. https://doi.org/10.1016/j.jhazmat.2020.122137
  • Janbandhu, S. Y., Munishwar, S. R., & Gedam, R. S. (2018). Synthesis, characterization and photocatalytic degradation efficiency of CdS quantum dots embedded in sodium borosilicate glasses. Applied Surface Science, 449, 221–227. https://doi.org/10.1016/j.apsusc.2018.02.065
  • Jiang, M., Zhang, Y., Chen, J., Liang, Q., Xu, S., Yao, C., Zhou, M., & Li, Z. (2020). Anti-aggregation and morphology-controlled effects of bacterial cellulose encapsulated BiOBr for enhanced photodegradation efficiency. Cellulose, 27(15), 8843–8858. https://doi.org/10.1007/s10570-020-03381-6
  • Jiang, W.-L., Haider, M. R., Han, J.-L., Ding, Y.-C., Li, X.-Q., Wang, H.-C., Adeel Sharif, H. M., Wang, A.-J., & Ren, N.-Q. (2021). Carbon nanotubes intercalated RGO electro-Fenton membrane for coenhanced permeability, rejection and catalytic oxidation of organic micropollutants. Journal of Membrane Science, 623, 119069. https://doi.org/10.1016/j.memsci.2021.119069
  • Koutavarapu, R., Tamtam, M. R., Rao, M. C., Peera, S. G., & Shim, J. (2021). Recent progress in transition metal oxide/sulfide quantum dots-based nanocomposites for the removal of toxic organic pollutants. Chemosphere, 272, 129849. https://doi.org/10.1016/j.chemosphere.2021.129849
  • Lee, S., Kumari, N., Jeon, K.-W., Kumar, A., Kumar, S., Koo, J. H., Lee, J., Cho, Y.-K., & Lee, I. S. (2018). Monofacet-selective cavitation within solid-state silica-nanoconfinement toward Janus iron oxide nanocube. Journal of the American Chemical Society, 140(45), 15176–15180. https://doi.org/10.1021/jacs.8b09869
  • Li, H., Tian, J., Xiao, F., Huang, R., Gao, S., Cui, F., Wang, S., & Duan, X. (2020a). Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity. Journal of Hazardous Materials, 385, 121518. https://doi.org/10.1016/j.jhazmat.2019.121518
  • Li, H., Zhang, P., Guo, Y., Jia, J., Wang, S., Duan, X., Cui, F., Gao, S., & Tian, J. (2021). Iron-doped cuprous oxides toward accelerated nonradical oxidation: Doping induced controlled facet transformation and optimized electronic structure. Chemical Engineering Journal and the Biochemical Engineering Journal, 407, 127172. https://doi.org/10.1016/j.cej.2020.127172
  • Li, J., Gu, J., Li, H., Liang, Y., Hao, Y., Sun, X., & Wang, L. (2010). Synthesis of highly ordered Fe-containing mesoporous carbon materials using soft templating routes. Microporous and Mesoporous Materials, 128(1–3), 144–149. https://doi.org/10.1016/j.micromeso.2009.08.015
  • Li, X., Li, C., Gao, G., Lv, B., Xu, L., Lu, Y., & Zhang, G. (2020b). In-situ self-assembly of robust Fe (III)-carboxyl functionalized polyacrylonitrile polymeric bead catalyst for efficient photo-Fenton oxidation of p-nitrophenol. The Science of the Total Environment, 702, 134910. https://doi.org/10.1016/j.scitotenv.2019.134910
  • Li, X., Liu, X., Xu, L., Wen, Y., Ma, J., & Wu, Z. (2015). Highly dispersed Pd/PdO/Fe2O3 nanoparticles in SBA-15 for Fenton-like processes: Confinement and synergistic effects. Applied Catalysis B: Environmental, 165, 79–86. https://doi.org/10.1016/j.apcatb.2014.09.071
  • Lin, J., Chen, S., Xiao, H., Zhang, J., Lan, J., Yan, B., & Zeng, H. (2020). Ultra-efficient and stable heterogeneous iron-based Fenton nanocatalysts for degrading organic dyes at neutral pH via a chelating effect under nanoconfinement. Chemical Communications (Cambridge, England), 56(48), 6571–6574. https://doi.org/10.1039/d0cc01662d
  • Lin, K.-S., & Wang, H. P. (2000). Supercritical water oxidation of 2-chlorophenol catalyzed by Cu2+ cations and copper oxide clusters. Environmental Science & Technology, 34(22), 4849–4854. https://doi.org/10.1021/es001062s
  • Liu, B., Song, W., Wu, H., Liu, Z., Teng, Y., Sun, Y., Xu, Y., & Zheng, H. (2020). Degradation of norfloxacin with peroxymonosulfate activated by nanoconfinement Co3O4@CNT nanocomposite. Chemical Engineering Journal and the Biochemical Engineering Journal, 398, 125498. https://doi.org/10.1016/j.cej.2020.125498
  • Liu, C., Li, J., Qi, J., Wang, J., Luo, R., Shen, J., Sun, X., Han, W., & Wang, L. (2014). Yolk–shell Fe0@SiO2 nanoparticles as nanoreactors for Fenton-like catalytic reaction. ACS Applied Materials & Interfaces, 6(15), 13167–13173. https://doi.org/10.1021/am503063m
  • Liu, J., Yin, H., Nie, Q., Wang, H., Zhou, J., & Zou, S. (2021a). Encapsulating Mn3O4 nanorods in a shell of SiO2 nanobubbles for confined Fenton-type catalysis. Inorganic Chemistry, 60(21), 16658–16665. https://doi.org/10.1021/acs.inorgchem.1c02557
  • Liu, W.-J., Kwon, E., Thanh, B. X., Khiem, T. C., Tuan, D. D., Lin, J.-Y., Wi-Afedzi, T., Hu, C., Sirivithayapakorn, S., & Lin, K.-Y. A. (2022a). Hofmann-MOF derived nanoball assembled by FeNi alloy confined in carbon nanotubes as a magnetic catalyst for activating peroxydisulfate to degrade an ionic liquid. Separation and Purification Technology, 295, 120945. https://doi.org/10.1016/j.seppur.2022.120945
  • Liu, X., Hou, W., Huang, Y., Zhao, H., Song, Z., & Huang, Y. (2022b). Facile and green synthesis of carbon nanopinnacles for the removal of chlortetracycline: Performance, mechanism and biotoxicity. Chemical Engineering Journal and the Biochemical Engineering Journal, 433, 133822. https://doi.org/10.1016/j.cej.2021.133822
  • Liu, X., Hou, W., Meng, X., Bi, X., Zhao, H., Wang, Z., & Astruc, D. (2021b). Degradation of tetracycline over carbon nanosheet: High efficiency, mechanism and biotoxicity assessment. Environmental Science: Nano, 8(12), 3762–3773. https://doi.org/10.1039/D1EN00841B
  • Luo, J., Bo, S., An, Q., Xiao, Z., Wang, H., Cai, W., Zhai, S., & Li, Z. (2020). Designing ordered composites with confined Co–N/C layers for efficient pollutant degradation: Structure-dependent performance and PMS activation mechanism. Microporous and Mesoporous Materials, 293, 109810. https://doi.org/10.1016/j.micromeso.2019.109810
  • Ma, L., Feng, X., Cai, F., Sun, C., & Ding, H. (2022a). Cobalt-doped UiO-66 nanoparticle as a photo-assisted Fenton-like catalyst for the degradation of rhodamine B. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 643, 128734. https://doi.org/10.1016/j.colsurfa.2022.128734
  • Ma, Y., Ji, B., Lv, X., Xiong, D., Zhao, X., Xie, H., & Zhang, Z. (2022b). Confined heterogeneous catalysis by boron nitride-Co3O4 nanosheet cluster for peroxymonosulfate oxidation toward ranitidine removal. Chemical Engineering Journal and the Biochemical Engineering Journal, 435, 135126. https://doi.org/10.1016/j.cej.2022.135126
  • Ma, Y., Wang, H., Lv, X., Xiong, D., Xie, H., & Zhang, Z. (2022c). Three-dimensional ordered mesoporous Co3O4/peroxymonosulfate triggered nanoconfined heterogeneous catalysis for rapid removal of ranitidine in aqueous solution. Chemical Engineering Journal and the Biochemical Engineering Journal, 443, 136495. https://doi.org/10.1016/j.cej.2022.136495
  • Mani, A., Kulandaivellu, T., Govindaswamy, S., & Mohan, A. M. (2018). Fe3O4 nanoparticle-encapsulated mesoporous carbon composite: An efficient heterogeneous Fenton catalyst for phenol degradation. Environmental Science and Pollution Research International, 25(21), 20419–20429. https://doi.org/10.1007/s11356-017-9663-4
  • Meng, C., Ding, B., Zhang, S., Cui, L., Ostrikov, K. K., Huang, Z., Yang, B., Kim, J.-H., & Zhang, Z. (2022a). Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels. Nature Communications, 13(1), 4010. https://doi.org/10.1038/s41467-022-31807-1
  • Meng, C., Wang, Z., Zhang, W., Cui, L., Yang, B., Xie, H., & Zhang, Z. (2022b). Laminar membranes assembled by ultrathin cobalt-copper oxide nanosheets for nanoconfined catalytic degradation of contaminants. Chemical Engineering Journal and the Biochemical Engineering Journal, 449, 137811. https://doi.org/10.1016/j.cej.2022.137811
  • Miao, X., Chen, X., Wu, W., Lin, D., & Yang, K. (2022). Intrinsic defects enhanced biochar/peroxydisulfate oxidation capacity through electron-transfer regime. Chemical Engineering Journal and the Biochemical Engineering Journal, 438, 135606. https://doi.org/10.1016/j.cej.2022.135606
  • Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118–131. https://doi.org/10.1016/j.watres.2018.03.042
  • Nguyen, H. T., Lee, J., Kwon, E., Lisak, G., Thanh, B. X., Ghanbari, F., & Lin, K.-Y. A. (2021). Bamboo-like N-doped carbon nanotube–confined cobalt as an efficient and robust catalyst for activating monopersulfate to degrade bisphenol A. Chemosphere, 279, 130569. https://doi.org/10.1016/j.chemosphere.2021.130569
  • Nie, F., Xu, W., Zhang, D., Wang, J., Zhang, R., Fang, X., & Wang, Y. (2022). 3D hierarchical local heterojunction as ultra-highly efficient Fenton-like catalyst: Mechanism of coupling the proton-coupled electron transfer under nanoconfinement effect. Journal of Environmental Chemical Engineering, 10(3), 107604. https://doi.org/10.1016/j.jece.2022.107604
  • Oturan, M. A., & Aaron, J.-J. (2014). Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44(23), 2577–2641. https://doi.org/10.1080/10643389.2013.829765
  • Panthi, G., Park, M., Park, S.-J., & Kim, H.-Y. (2015). PAN electrospun nanofibers reinforced with Ag2CO3 nanoparticles: Highly efficient visible light photocatalyst for photodegradation of organic contaminants in waste water. Macromolecular Research, 23(2), 149–155. https://doi.org/10.1007/s13233-015-3032-2
  • Peng, Q., Peng, G., Wu, L., Li, J., Wang, X., Liu, M., & Li, X. (2019). Fe2O3 modification promotes the photocatalytic performance of TiO2 nanotube confined Pd nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 380, 111865. https://doi.org/10.1016/j.jphotochem.2019.111865
  • Qian, J., Gao, X., & Pan, B. (2020). Nanoconfinement-mediated water treatment: From fundamental to application. Environmental Science & Technology, 54(14), 8509–8526. https://doi.org/10.1021/acs.est.0c01065
  • Qiu, J.-L., Su, J., Muhammad, N., Zheng, W.-T., Yue, C.-L., Liu, F.-Q., Zuo, J.-L., & Ding, Z.-J. (2022). Facile encapsulating Ag nanoparticles into a tetrathiafulvalene-based Zr-MOF for enhanced photocatalysis. Chemical Engineering Journal and the Biochemical Engineering Journal, 427, 131970. https://doi.org/10.1016/j.cej.2021.131970
  • Qu, W., Chen, C., Tang, Z., Xia, D., Ma, D., Huang, Y., Lian, Q., He, C., Shu, D., & Han, B. (2022). Electron-rich/poor reaction sites enable ultrafast confining Fenton-like processes in facet-engineered BiOI membranes for water purification. Applied Catalysis B: Environmental, 304, 120970. https://doi.org/10.1016/j.apcatb.2021.120970
  • Razavi-Esfali, M., Mahvelati-Shamsabadi, T., Fattahimoghaddam, H., & Lee, B.-K. (2021). Highly efficient photocatalytic degradation of organic pollutants by mesoporous graphitic carbon nitride bonded with cyano groups. Chemical Engineering Journal and the Biochemical Engineering Journal, 419, 129503. https://doi.org/10.1016/j.cej.2021.129503
  • Ren, W., Xiong, L., Yuan, X., Yu, Z., Zhang, H., Duan, X., & Wang, S. (2019). Activation of peroxydisulfate on carbon nanotubes: Electron-transfer mechanism. Environmental Science & Technology, 53(24), 14595–14603. https://doi.org/10.1021/acs.est.9b05475
  • Shahzad, A., Ali, J., Ifthikar, J., Aregay, G. G., Zhu, J., Chen, Z., & Chen, Z. (2020). Non-radical PMS activation by the nanohybrid material with periodic confinement of reduced graphene oxide (rGO) and Cu hydroxides. Journal of Hazardous Materials, 392, 122316. https://doi.org/10.1016/j.jhazmat.2020.122316
  • Shen, Z., Fan, L., Yang, S., Yao, Y., Chen, H., & Wang, W. (2021). Fe-based carbonitride as Fenton-like catalyst for the elimination of organic contaminants. Environmental Research, 198, 110486. https://doi.org/10.1016/j.envres.2020.110486
  • Shi, H., He, Y., Li, Y., He, T., & Luo, P. (2022). Confined ultrasmall MOF nanoparticles anchored on a 3D-graphene network as efficient and broad pH-adaptive photo Fenton-like catalysts. Environmental Science: Nano, 9(3), 1091–1105. https://doi.org/10.1039/D1EN00944C
  • Shi, W., Du, D., Shen, B., Cui, C., Lu, L., Wang, L., & Zhang, J. (2016). Synthesis of Yolk–Shell structured Fe3O4@void@CdS nanoparticles: A general and effective structure design for Photo-Fenton reaction. ACS Applied Materials & Interfaces, 8(32), 20831–20838. https://doi.org/10.1021/acsami.6b07644
  • Song, N., Ren, S., Zhang, Y., Wang, C., & Lu, X. (2022). Confinement of prussian blue analogs boxes inside conducting polymer nanotubes enables significantly enhanced catalytic performance for water treatment. Advanced Functional Materials, 32(34), 2204751. https://doi.org/10.1002/adfm.202204751
  • Su, P., Du, X., Zheng, Y., Fu, W., Zhang, Q., & Zhou, M. (2022). Interface-confined multi-layered reaction centers between Ce-MOFs and Fe3O4@C for heterogeneous electro-Fenton at wide pH 3-9: Mediation of Ce3+/Ce4+ and oxygen vacancy. Chemical Engineering Journal and the Biochemical Engineering Journal, 433, 133597. https://doi.org/10.1016/j.cej.2021.133597
  • Wacławek, S. (2021). Do we still need a laboratory to study advanced oxidation processes? A review of the modelling of radical reactions used for water treatment. Ecological Chemistry and Engineering S, 28(1), 11–28. https://doi.org/10.2478/eces-2021-0002
  • Su, P., Zhou, M., Ren, G., Lu, X., Du, X., & Song, G. (2019). A carbon nanotube-confined iron modified cathode with prominent stability and activity for heterogeneous electro-Fenton reactions. Journal of Materials Chemistry A, 7(42), 24408–24419. https://doi.org/10.1039/C9TA07491K
  • Wang, J., Liu, C., Qi, J., Li, J., Sun, X., Shen, J., Han, W., & Wang, L. (2018). Enhanced heterogeneous Fenton-like systems based on highly dispersed Fe0-Fe2O3 nanoparticles embedded ordered mesoporous carbon composite catalyst. Environmental Pollution (Barking, Essex : 1987), 243(Pt B), 1068–1077. https://doi.org/10.1016/j.envpol.2018.09.057
  • Wang, P., Liu, X., Qiu, W., Wang, F., Jiang, H., Chen, M., Zhang, W., & Ma, J. (2020a). Catalytic degradation of micropollutant by peroxymonosulfate activation through Fe(III)/Fe(II) cycle confined in the nanoscale interlayer of Fe(III)-saturated montmorillonite. Water Research, 182, 116030. https://doi.org/10.1016/j.watres.2020.116030
  • Wang, W., Fang, J., & Chen, H. (2020b). Nano-confined g-C3N4 in mesoporous SiO2 with improved quantum size effect and tunable structure for photocatalytic tetracycline antibiotic degradation. Journal of Alloys and Compounds, 819, 153064. https://doi.org/10.1016/j.jallcom.2019.153064
  • Wang, X., Li, H., Shan, C., & Pan, B. (2022a). Construction of model platforms to probe the confinement effect of nanocomposite-enabled water treatment. Chemical Engineering Journal Advances, 9, 100229. https://doi.org/10.1016/j.ceja.2021.100229
  • Wang, Y., Wu, L., Zhou, Y., Zhang, Y., Sun, S.-P., Wang, X., Wu, Z., & Wu, W. D. (2022b). Ternary FeS/γ-Fe2O3@N/S-doped carbon nanohybrids dispersed in an ordered mesoporous silica for efficient peroxymonosulfate activation. Chemical Engineering Journal and the Biochemical Engineering Journal, 435, 135124. https://doi.org/10.1016/j.cej.2022.135124
  • Wu, L., Sun, Z., Zhen, Y., Zhu, S., Yang, C., Lu, J., Tian, Y., Zhong, D., & Ma, J. (2021). Oxygen vacancy-induced nonradical degradation of organics: Critical trigger of oxygen (O2) in the Fe–Co LDH/peroxymonosulfate system. Environmental Science & Technology, 55(22), 15400–15411. https://doi.org/10.1021/acs.est.1c04600
  • Wu, P., Zhu, W., Dai, B., Chao, Y., Li, C., Li, H., Zhang, M., Jiang, W., & Li, H. (2016). Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization. Chemical Engineering Journal and the Biochemical Engineering Journal, 301, 123–131. https://doi.org/10.1016/j.cej.2016.04.103
  • Wu, X., Rigby, K., Huang, D., Hedtke, T., Wang, X., Chung, M. W., Weon, S., Stavitski, E., & Kim, J.-H. (2022a). Single-atom cobalt incorporated in a 2D graphene oxide membrane for catalytic pollutant degradation. Environmental Science & Technology, 56(2), 1341–1351. https://doi.org/10.1021/acs.est.1c06371
  • Wu, Y., Chen, X., Han, Y., Yue, D., Cao, X., Zhao, Y., & Qian, X. (2019). Highly efficient utilization of nano-Fe(0) embedded in mesoporous carbon for activation of peroxydisulfate. Environmental Science & Technology, 53(15), 9081–9090. https://doi.org/10.1021/acs.est.9b02170
  • Wu, Z., Xiong, Z., Liu, R., He, C., Liu, Y., Pan, Z., Yao, G., & Lai, B. (2022b). Pivotal roles of N-doped carbon shell and hollow structure in nanoreactor with spatial confined Co species in peroxymonosulfate activation: Obstructing metal leaching and enhancing catalytic stability. Journal of Hazardous Materials, 427, 128204. https://doi.org/10.1016/j.jhazmat.2021.128204
  • Xie, J., Liao, Z., Zhang, M., Ni, L., Qi, J., Wang, C., Sun, X., Wang, L., Wang, S., & Li, J. (2021). Sequential ultrafiltration-catalysis membrane for excellent removal of multiple pollutants in water. Environmental Science & Technology, 55(4), 2652–2661. https://doi.org/10.1021/acs.est.0c07418
  • Xie, Y., Liu, Y., Yao, Y., Shi, Y., Zhao, B., & Wang, Y. (2022). In-situ synthesis of N, S co-doped hollow carbon microspheres for efficient catalytic oxidation of organic contaminants. Chinese Chemical Letters, 33(3), 1298–1302. https://doi.org/10.1016/j.cclet.2021.07.055
  • Xu, T., Long, Y., He, C., Song, X., Zhao, W., & Zhao, C. (2021). Construction of dual-carbon-confined metal sulfide nanocrystals via bio-mimetic reactors enabling superior Fenton-like catalysis. Journal of Materials Chemistry A, 9(40), 22994–23010. https://doi.org/10.1039/D1TA04831G
  • Yang, J., He, X., Dai, J., Chen, Y., Li, Y., & Hu, X. (2021a). Electron-transfer-dominated non-radical activation of peroxydisulfate for efficient removal of chlorophenol contaminants by one-pot synthesized nitrogen and sulfur codoped mesoporous carbon. Environmental Research, 194, 110496. https://doi.org/10.1016/j.envres.2020.110496
  • Yang, J., Li, P., Duan, X., Zeng, D., Ma, Z., An, S., Dong, L., Cen, W., & He, Y. (2022). Insights into the role of dual reaction sites for single Ni atom Fenton-like catalyst towards degradation of various organic contaminants. Journal of Hazardous Materials, 430, 128463. https://doi.org/10.1016/j.jhazmat.2022.128463
  • Yang, Y.-H., Ren, N., Zhang, Y.-H., & Tang, Y. (2009). Nanosized cadmium sulfide in polyelectrolyte protected mesoporous sphere: A stable and regeneratable photocatalyst for visible-light-induced removal of organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 201(2-3), 111–120. https://doi.org/10.1016/j.jphotochem.2008.10.012
  • Yang, Z., Qian, J., Shan, C., Li, H., Yin, Y., & Pan, B. (2021b). Toward selective oxidation of contaminants in aqueous systems. Environmental Science & Technology, 55(21), 14494–14514. https://doi.org/10.1021/acs.est.1c05862
  • Yang, Z., Qian, J., Yu, A., & Pan, B. (2019). Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 6659–6664. https://doi.org/10.1073/pnas.1819382116
  • Yao, Y., Hu, H., Yin, H., Ma, Z., Tao, Z., Qiu, Y., & Wang, S. (2022a). Pyrite-embedded porous carbon nanocatalysts assembled in polyvinylidene difluoride membrane for organic pollutant oxidation. Journal of Colloid and Interface Science, 608(Pt 3), 2942–2954. https://doi.org/10.1016/j.jcis.2021.11.021
  • Yao, Y., Wang, C., Na, J., Hossain, M.,S. A., Yan, X., Zhang, H., Amin, M. A., Qi, J., Yamauchi, Y., & Li, J. (2022b). Macroscopic MOF architectures: Effective strategies for practical application in water treatment. Small, 18(8), 2104387. https://doi.org/10.1002/smll.202104387
  • Yao, Y., Yin, H., Gao, M., Hu, Y., Hu, H., Yu, M., & Wang, S. (2019). Electronic structure modulation of covalent organic frameworks by single-atom Fe doping for enhanced oxidation of aqueous contaminants. Chemical Engineering Sciences, 209, 115211. https://doi.org/10.1016/j.ces.2019.115211
  • Ye, J., Dai, J., Yang, D., Li, C., Yan, Y., & Wang, Y. (2021a). 2D/2D confinement graphene-supported bimetallic sulfides/g-C3N4 composites with abundant sulfur vacancies as highly active catalytic self-cleaning membranes for organic contaminants degradation. Chemical Engineering Journal and the Biochemical Engineering Journal, 418, 129383. https://doi.org/10.1016/j.cej.2021.129383
  • Ye, J., Dai, J., Yang, D., Li, C., Yan, Y., & Wang, Y. (2022). Interfacial engineering of vacancy-rich nitrogen-doped FexOy@MoS2 Co-catalytic carbonaceous beads mediated non-radicals for fast catalytic oxidation. Journal of Hazardous Materials, 421, 126715. https://doi.org/10.1016/j.jhazmat.2021.126715
  • Ye, J., Wang, Y., Li, Z., Yang, D., Li, C., Yan, Y., & Dai, J. (2021b). 2D confinement freestanding graphene oxide composite membranes with enriched oxygen vacancies for enhanced organic contaminants removal via peroxymonosulfate activation. Journal of Hazardous Materials, 417, 126028. https://doi.org/10.1016/j.jhazmat.2021.126028
  • Yin, Y., Liu, M., Shi, L., Zhang, S., Hirani, R. A. K., Zhu, C., Chen, C., Yuan, A., Duan, X., Wang, S., & Sun, H. (2022). Highly dispersive Ru confined in porous ultrathin g-C3N4 nanosheets as an efficient peroxymonosulfate activator for removal of organic pollutants. Journal of Hazardous Materials, 435, 128939. https://doi.org/10.1016/j.jhazmat.2022.128939
  • Yin, Y., Shi, L., Li, W., Li, X., Wu, H., Ao, Z., Tian, W., Liu, S., Wang, S., & Sun, H. (2019). Boosting Fenton-like reactions via single atom Fe catalysis. Environmental Science & Technology, 53(19), 11391–11400. https://doi.org/10.1021/acs.est.9b03342
  • Yin, Y., Wu, H., Shi, L., Zhang, J., Xu, X., Zhang, H., Wang, S., Sillanpääd, M., & Sun, H. (2018). Quasi single cobalt sites in nanopores for superior catalytic oxidation of organic pollutants. Environmental Science: Nano, 5(12), 2842–2852. https://doi.org/10.1039/C8EN01047A
  • Yu, D., Ni, H., Wang, L., Wu, M., & Yang, X. (2018). Nanoscale-confined precursor of CuFe2O4 mediated by hyperbranched polyamide as an unusual heterogeneous Fenton catalyst for efficient dye degradation. Journal of Cleaner Production, 186, 146–154. https://doi.org/10.1016/j.jclepro.2018.03.134
  • Zeng, T., Zhang, X., Wang, S., Ma, Y., Niu, H., & Cai, Y. (2014). Assembly of a nanoreactor system with confined magnetite core and shell for enhanced Fenton-like catalysis. Chemistry (Weinheim an Der Bergstrasse, Germany), 20(21), 6474–6481. https://doi.org/10.1002/chem.201304221
  • Zeng, T., Zhang, X., Wang, S., Niu, H., & Cai, Y. (2015). Spatial confinement of a Co3O4 catalyst in hollow metal–organic frameworks as a nanoreactor for improved degradation of organic pollutants. Environmental Science & Technology, 49(4), 2350–2357. https://doi.org/10.1021/es505014z
  • Zhang, B.-T., Kuang, L., Teng, Y., Fan, M., & Ma, Y. (2021a). Application of percarbonate and peroxymonocarbonate in decontamination technologies. Journal of Environmental Sciences (China), 105, 100–115. https://doi.org/10.1016/j.jes.2020.12.031
  • Zhang, B.-T., Zhang, Y., & Teng, Y. (2018a). Electrospun magnetic cobalt–carbon nanofiber composites with axis-sheath structure for efficient peroxymonosulfate activation. Applied Surface Science, 452, 443–450. https://doi.org/10.1016/j.apsusc.2018.05.065
  • Zhang, B.-T., Zhang, Y., Teng, Y., & Fan, M. (2015). Sulfate radical and its application in decontamination technologies. Critical Reviews in Environmental Science and Technology, 45(16), 1756–1800. https://doi.org/10.1080/10643389.2014.970681
  • Zhang, B.-T., Zheng, X., Li, H.-F., & Lin, J.-M. (2013). Application of carbon-based nanomaterials in sample preparation: A review. Analytica Chimica Acta, 784, 1–17. https://doi.org/10.1016/j.aca.2013.03.054
  • Zhang, C., Ma, Y., Li, C., Qin, F., Hu, C., Hu, Q., & Duo, S. (2020a). Spatially confined growth of Bi2O4 into hierarchical TiO2 spheres for improved visible light photocatalytic activity. Journal of Materials Science, 55(8), 3181–3194. https://doi.org/10.1007/s10853-019-04143-x
  • Zhang, M., Luo, R., Wang, C., Zhang, W., Yan, X., Sun, X., Wang, L., & Li, J. (2019). Confined pyrolysis of metal–organic frameworks to N-doped hierarchical carbon for non-radical dominated advanced oxidation processes. Journal of Materials Chemistry A, 7(20), 12547–12555. https://doi.org/10.1039/C9TA02931A
  • Zhang, M., Wang, C., Liu, C., Luo, R., Li, J., Sun, X., Shen, J., Han, W., & Wang, L. (2018b). Metal–organic framework derived Co3O4/C@SiO2 yolk–shell nanoreactors with enhanced catalytic performance. Journal of Materials Chemistry A, 6(24), 11226–11235. https://doi.org/10.1039/C8TA03565B
  • Zhang, M., Xiao, C., Yan, X., Chen, S., Wang, C., Luo, R., Qi, J., Sun, X., Wang, L., & Li, J. (2020b). Efficient removal of organic pollutants by metal–organic framework derived Co/C yolk–shell nanoreactors: Size-exclusion and confinement effect. Environmental Science & Technology, 54(16), 10289–10300. https://doi.org/10.1021/acs.est.0c00914
  • Zhang, S., Hedtke, T., Zhu, Q., Sun, M., Weon, S., Zhao, Y., Stavitski, E., Elimelech, M., & Kim, J.-H. (2021b). Membrane-confined iron oxychloride nanocatalysts for highly efficient heterogeneous Fenton water treatment. Environmental Science & Technology, 55(13), 9266–9275. https://doi.org/10.1021/acs.est.1c01391
  • Zhang, S., Quan, X., & Wang, D. (2018c). Catalytic ozonation in arrayed zinc oxide nanotubes as highly efficient mini-column catalystreactors (MCRs): Augmentation of hydroxyl radical exposure. Environmental Science & Technology, 52(15), 8701–8711. https://doi.org/10.1021/acs.est.8b02103
  • Zhang, S., Sun, M., Hedtke, T., Deshmukh, A., Zhou, X., Weon, S., Elimelech, M., & Kim, J.-H. (2020c). Mechanism of heterogeneous Fenton reaction kinetics enhancement under nanoscale spatial confinement. Environmental Science & Technology, 54(17), 10868–10875. https://doi.org/10.1021/acs.est.0c02192
  • Zhang, S., Yi, J., Chen, J., Yin, Z., Tang, T., Wei, W., Cao, S., & Xu, H. (2020d). Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics. Chemical Engineering Journal and the Biochemical Engineering Journal, 380, 122583. https://doi.org/10.1016/j.cej.2019.122583
  • Zhang, X., Xu, B., Wang, S., Li, X., Wang, C., Liu, B., Han, F., Xu, Y., Yu, P., & Sun, Y. (2022). Tetracycline degradation by peroxymonosulfate activated with CoNx active sites: Performance and activation mechanism. Chemical Engineering Journal and the Biochemical Engineering Journal, 431, 133477. https://doi.org/10.1016/j.cej.2021.133477
  • Zhang, Y., Chen, J., Tang, H., Xiao, Y., Qiu, S., Li, S., & Cao, S. (2018d). Hierarchically-structured SiO2-Ag@TiO2 hollow spheres with excellent photocatalytic activity and recyclability. Journal of Hazardous Materials, 354, 17–26. https://doi.org/10.1016/j.jhazmat.2018.04.047
  • Zhang, Y., Zhang, B.-T., Teng, Y., Zhao, J., Kuang, L., & Sun, X. (2020e). Carbon nanofibers supported Co/Ag bimetallic nanoparticles for heterogeneous activation of peroxymonosulfate and efficient oxidation of amoxicillin. Journal of Hazardous Materials, 400, 123290. https://doi.org/10.1016/j.jhazmat.2020.123290
  • Zhang, Y., Zhang, B.-T., Teng, Y., Zhao, J., & Sun, X. (2021c). Heterogeneous activation of persulfate by carbon nanofiber supported Fe3O4@carbon composites for efficient ibuprofen degradation. Journal of Hazardous Materials, 401, 123428. https://doi.org/10.1016/j.jhazmat.2020.123428
  • Zhang, Z., Muhammad, Y., Chen, Y., Shah, S. J., Peng, Y., Shao, S., Wang, R., Li, X., Liu, H., & Zhao, Z. (2021d). Construction of ultra-stable and Z-scheme Fe-graphdiyne/MIL-100(Fe) photo-Fenton catalyst with C = C-Fe|O interface for the highly enhanced catalytic degradation of dinotefuran. Chemical Engineering Journal, 426, 131621. https://doi.org/10.1016/j.cej.2021.131621
  • Zhao, S., Chen, J., Liu, Y., Jiang, Y., Jiang, C., Yin, Z., Xiao, Y., & Cao, S. (2019). Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability. Chemical Engineering Journal and the Biochemical Engineering Journal, 367, 249–259. https://doi.org/10.1016/j.cej.2019.02.123
  • Zhao, Y., Sun, M., Wang, X., Wang, C., Lu, D., Ma, W., Kube, S. A., Ma, J., & Elimelech, M. (2020). Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nature Communications, 11(1), 6228. https://doi.org/10.1038/s41467-020-20071-w
  • Zhong, X., Barbier, J., Duprez, D., Zhang, H., & Royer, S. (2012). Modulating the copper oxide morphology and accessibility by using micro-/mesoporous SBA-15 structures as host support: Effect on the activity for the CWPO of phenol reaction. Applied Catalysis B: Environmental, 121-122, 123–134. https://doi.org/10.1016/j.apcatb.2012.04.002
  • Zhou, J., Guo, X., Zhou, X., Yang, J., Yu, S., Niu, X., Chen, Q., Li, F., & Liu, Y. (2022). Boosting the efficiency of Fe-MoS2/peroxymonosulfate catalytic systems for organic powllutants remediation: Insights into edge-site atomic coordination. Chemical Engineering Journal and the Biochemical Engineering Journal, 433, 134511. https://doi.org/10.1016/j.cej.2022.134511
  • Zhou, P., Xie, Y., Fang, J., Ling, Y., Yu, C., Liu, X., Dai, Y., Qin, Y., & Zhou, D. (2017). CdS quantum dots confined in mesoporous TiO2 with exceptional photocatalytic performance for degradation of organic polutants. Chemosphere, 178, 1–10. https://doi.org/10.1016/j.chemosphere.2017.03.024
  • Zhou, S., Song, C., Kong, W., Wang, B., & Kong, Y. (2020). Effects of synergetic effect between Co and γ-Fe2O3 in confined silica matrix of MCM-41 on the formation of free radicals for the advanced oxidation technology. Applied Surface Science, 527, 146853. https://doi.org/10.1016/j.apsusc.2020.146853
  • Zhu, S., Huang, X., Ma, F., Wang, L., Duan, X., & Wang, S. (2018). Catalytic removal of aqueous contaminants on N-doped graphitic biochars: Inherent roles of adsorption and nonradical mechanisms. Environmental Science & Technology, 52(15), 8649–8658. https://doi.org/10.1021/acs.est.8b01817
  • Zhu, S., Jin, C., Duan, X., Wang, S., & Ho, S.-H. (2020). Nonradical oxidation in persulfate activation by graphene-like nanosheets (GNS): Differentiating the contributions of singlet oxygen (1O2) and sorption-dependent electron transfer. Chemical Engineering Journal and the Biochemical Engineering Journal, 393, 124725. https://doi.org/10.1016/j.cej.2020.124725

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.