1,349
Views
1
CrossRef citations to date
0
Altmetric
Invited Review

Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview

ORCID Icon &
Pages 1837-1865 | Published online: 15 Jun 2023
 

Abstract

Heavy metal pollution has become one of the most severe environmental issues. Adsorption is an effective method for removing heavy metals from aquatic environments. The adsorption isotherm and kinetics models can provide information on the adsorption process, maximal adsorption capacity, and mass transfer steps, which are essential to evaluate the performance of an adsorbent and to design an adsorption system. In this review, the adsorption kinetics and isotherms of heavy metals by various adsorbents were summarized and discussed in depth. First, the sources of heavy metal pollution and the adsorption technology to remove heavy metals were reviewed. The adsorption capacity of Cu, Cd, Zn, Ni, Cr, As, Fe, Hg, Co, Sr, and Cs by biosorbents (e.g. algae, agriculture waste biochar/activated carbon, and bacteria) and by abiotic adsorbents (e.g. metal–organic frameworks (MOFs), microtubes, polymers, clays, minerals, and coal) were systematically summarized. Second, the origins, basic assumptions, importance, physical meanings, and applications of the adsorption kinetics and isotherm models were discussed in depth. Third, the methods for selecting adsorption models in different conditions were explained, and the statistical parameters which can be applied to evaluate the performance of the models were illustrated. Finally, two Excel sheets are provided for solving the adsorption models, which are available in Supplementary Information. This review article will deepen the understanding of the interaction between heavy metals and adsorbents and facilitate the development of adsorptive technology for heavy metal removal from water and wastewater.

Additional information

Funding

The research was supported by the National Key Research and Development Program (2016YFC1402507) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13026).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.