1,349
Views
1
CrossRef citations to date
0
Altmetric
Invited Review

Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview

ORCID Icon &
Pages 1837-1865 | Published online: 15 Jun 2023

References

  • Abaszadeh, M., Hosseinzadeh, R., Tajbakhsh, M., & Ghasemi, S. (2022). The synthesis of functionalized magnetic graphene oxide with 5-amino-1,10-phenanthroline and investigation of its dual application in C-N coupling reactions and adsorption of heavy metal ions. Journal of Molecular Structure, 1261, 132832. https://doi.org/10.1016/j.molstruc.2022.132832
  • Agarwal, A., Kadu, M., Pandhurnekar, C., & Muthreja, I. L. (2014). Langmuir, Freundlich and BET adsorption isotherm studies for Zinc ions onto coal fly ash. International Journal of Application or Innovation in Engineering & Management, 3, 64–71.
  • Akbari, M., Hallajisani, A., Keshtkar, A. R., Shahbeig, H., & Ali Ghorbanian, S. (2015). Equilibrium and kinetic study and modeling of Cu(II) and Co(II) synergistic biosorption from Cu(II)-Co(II) single and binary mixtures on brown algae C. indica. Journal of Environmental Chemical Engineering, 3(1), 140–149. https://doi.org/10.1016/j.jece.2014.11.004
  • Alexander, D., Ellerby, R., Hernandez, A., Wu, F., & Amarasiriwardena, D. (2017). Investigation of simultaneous adsorption properties of Cd, Cu, Pb and Zn by pristine rice husks using ICP-AES and LA-ICP-MS analysis. Microchemical Journal, 135, 129–139. https://doi.org/10.1016/j.microc.2017.08.001
  • Al-Ghouti, M. A., & Da’ana, D. A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
  • Anastopoulos, I., & Kyzas, G. Z. (2016). Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? Journal of Molecular Liquids, 218, 174–185. https://doi.org/10.1016/j.molliq.2016.02.059
  • Arefin, M. T., Rahman, M. M., Wahid-U-Zzaman, M., & Kim, J. E. (2016). Heavy metal contamination in surface water used for irrigation: Functional assessment of the Turag River in Bangladesh. Journal of Applied Biological Chemistry, 59(1), 83–90. https://doi.org/10.3839/jabc.2016.015
  • Azizian, S. (2004). Kinetic models of sorption: A theoretical analysis. Journal of Colloid and Interface Science, 276(1), 47–52. https://doi.org/10.1016/j.jcis.2004.03.048
  • Bădescu, I. S., Bulgariu, D., Ahmad, I., & Bulgariu, L. (2018). Valorisation possibilities of exhausted biosorbents loaded with metal ions – A review. Journal of Environmental Management, 224, 288–297. https://doi.org/10.1016/j.jenvman.2018.07.066
  • Bahsaine, K., Mekhzoum, M. E. M., Benzeid, H., Qaiss, A., & Bouhfid, R. (2022). Recent progress in heavy metals extraction from phosphoric acid: A short review. Journal of Industrial and Engineering Chemistry, 115, 120–134. https://doi.org/10.1016/j.jiec.2022.08.029
  • Banerjee, J., Bar, N., Basu, R. K., & Das, S. K. (2022). Development of Ni(II) resistant S. cerevisiae and its application: Adsorption study and modeling. Chemosphere, 309(Pt 1), 136647. https://doi.org/10.1016/j.chemosphere.2022.136647
  • Bassam, R., El Alouani, M., Maissara, J., Jarmouni, N., Belhabra, M., Chbihi, M. E., & Belaaouad, S. (2022). Investigation of competitive adsorption and desorption of heavy metals from aqueous solution using raw rock: Characterization kinetic, isotherm, and thermodynamic. Materials Today: Proceedings, 52, 158–165. https://doi.org/10.1016/j.matpr.2021.11.450
  • Bastami, K. D., Bagheri, H., Kheirabadi, V., Zaferani, G. G., Teymori, M. B., Hamzehpoor, A., Soltani, F., Haghparast, S., Harami, S. R., Ghorghani, N. F., & Ganji, S. (2014). Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea. Marine Pollution Bulletin, 81(1), 262–267. https://doi.org/10.1016/j.marpolbul.2014.01.029
  • Beltrán, J. L., Pignatello, J. J., & Teixidó, M. (2016). ISOT_Calc: A versatile tool for parameter estimation in sorption isotherms. Computers & Geosciences, 94, 11–17. https://doi.org/10.1016/j.cageo.2016.04.008
  • BOlster, C. H., & Hornberger, G. M. (2007). On the use of linearized Langmuir equations. Soil Science Society of America Journal, 71(6), 1796–1806. https://doi.org/10.2136/sssaj2006.0304
  • Boyd, G. E., Adamson, A. W., & Myers, L. S. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. Journal of the American Chemical Society, 69(11), 2836–2848. https://doi.org/10.1021/ja01203a066
  • Brunauer, S., Emmet, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319. https://doi.org/10.1021/ja01269a023
  • Cao, Y., Hu, X., Zhu, C., Zhou, S., Li, R., Shi, H., Miao, S., Vakili, M., Wang, W., & Qi, D. (2020). Sulfhydryl functionalized covalent organic framework as an efficient adsorbent for selective Pb (II) removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 600, 125004. https://doi.org/10.1016/j.colsurfa.2020.125004
  • Chen, D., Yang, K., Wang, H., Zhou, J., & Zhang, H. (2015). Cr(VI) removal by combined redox reactions and adsorption using pectin-stabilized nanoscale zero-valent iron for simulated chromium contaminated water. RSC Advances, 5(80), 65068–65073. https://doi.org/10.1039/C5RA10573K
  • Chen, F., Hong, M., You, W., Li, C., & Yu, Y. (2015). Simultaneous efficient adsorption of Pb2+ and MnO4− ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride. Applied Surface Science, 357, 856–865. https://doi.org/10.1016/j.apsusc.2015.09.069
  • Chen, Q. Y., Yao, Y., Li, X. Y., Lu, J., Zhou, J., & Huang, Z. L. (2018). Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of Water Process Engineering, 26, 289–300. https://doi.org/10.1016/j.jwpe.2018.11.003
  • Cheng, R., Kang, M., Zhuang, S. T., Shi, L., Zheng, X., & Wang, J. L. (2019). Adsorption of Sr (II) from water by mercerized bacterial cellulose membrane modified with EDTA. Journal of Hazardous Materials, 364, 645–653. https://doi.org/10.1016/j.jhazmat.2018.10.083
  • Chettri, U., Chakrabarty, T. K., & Joshi, S. R. (2022). Pollution index assessment of surface water and sediment quality with reference to heavy metals in Teesta River in Eastern Himalayan range, India. Environmental Nanotechnology, Monitoring & Management, 18, 100742. https://doi.org/10.1016/j.enmm.2022.100742
  • Chien, S. H., & Clayton, W. R. (1980). Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society of America Journal, 44(2), 265–268. https://doi.org/10.2136/sssaj1980.03615995004400020013x
  • Chowdhury, S., Mazumder, M. A. J., Al-Attas, O., & Husain, T. (2016). Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Science of the Total Environment, 569-570, 476–488. https://doi.org/10.1016/j.scitotenv.2016.06.166
  • Chu, K. H. (2021). Revisiting the Temkin isotherm: Dimensional inconsistency and approximate forms. Industrial & Engineering Chemistry Research, 60(35), 13140–13147. https://doi.org/10.1021/acs.iecr.1c01788
  • Chu, K. H., Debord, J., Harel, M., & Bollinger, J. C. (2022). Mirror, mirror on the wall, which is the fairest of them all? Comparing the hill, sips, Koble-Corrigan, and Liu adsorption isotherms. Industrial & Engineering Chemistry Research, 61(19), 6781–6790. https://doi.org/10.1021/acs.iecr.2c00507
  • Crank, J. (1979). The mathematics of diffusion. Clarendon Press.
  • Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/s10311-018-0785-9
  • Dai, G., Li, X., Fu, H., Wang, F., Cui, Z., Zhao, R., & Wang, L. (2022). A novel oxalated zero-valent iron nanoparticle for Pb(II) removal from aqueous solution: Performance and synergistic mechanisms. Separation and Purification Technology, 302, 122017. https://doi.org/10.1016/j.seppur.2022.122017
  • Dong, J., Shen, L., Shan, S., Liu, W., Qi, Z., Liu, C., & Gao, X. (2022). Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution. The Science of the Total Environment, 806(Pt 4), 151442. https://doi.org/10.1016/j.scitotenv.2021.151442
  • Du, B. Y., Chai, L. F., Li, W., Wang, X., Chen, X. H., Zhou, J. H., & Sun, R. C. (2022). Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers. Separation and Purification Technology, 297, 121509. https://doi.org/10.1016/j.seppur.2022.121509
  • Dubinin, M. M., & Astakhov, V. A. (1971). Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents communication 1. Carbon adsorbents. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 20(1), 3–7. https://doi.org/10.1007/BF00849307
  • Dubinin, M. M., & Radushkevich, L. V. (1947). The equation of the characteristic curve of the activated charcoal. Proceedings of the Academy of Sciences Physical Chemistry Section USSR, 55, 331–337.
  • Duffus, J. H. (2002). “Heavy metals”–A meaningless term? Pure and Applied Chemistry, 74(5), 793–807. https://doi.org/10.1351/pac200274050793
  • Ebadi, A., Soltan Mohammadzadeh, J. S., & Khudiev, A. (2009). What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption, 15(1), 65–73. https://doi.org/10.1007/s10450-009-9151-3
  • Elgarahy, A. M., Elwakeel, K. Z., Mohammad, S. H., & Elshoubaky, G. A. (2021). A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Engineering & Technology, 4, 100209. https://doi.org/10.1016/j.clet.2021.100209
  • Elovich, S. Y., & Larinov, O. G. (1962). Theory of adsorption from solutions of non-electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 2, 209–216.
  • Ezzati, R. (2020). Derivation of pseudo-first-order, pseudo-second-order and modified pseudo first-order rate equations from Langmuir and Freundlich isotherms for adsorption. Chemical Engineering Journal, 392, 123705. https://doi.org/10.1016/j.cej.2019.123705
  • Freundlich, H. M. F. (1907). Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie, 57U(1), 385–470. https://doi.org/10.1515/zpch-1907-5723
  • Gendy, E. A., Ifthikar, J., Ali, J., Oyekunle, D. T., Elkhlifia, Z., Shahib, I. I., Khodair, A. I., & Chen, Z. (2021). Removal of heavy metals by covalent organic frameworks (COFs): A review on its mechanism and adsorption properties. Journal of Environmental Chemical Engineering, 9(4), 105687. https://doi.org/10.1016/j.jece.2021.105687
  • Girish, C. R. (2017). Various isotherm models for multicomponent adsorption: A Review. International Journal of Civil Engineering and Technology, 8, 80–86.
  • Glueckauf, E., & Coates, J. I. (1947). Theory of chromatography part IV: The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation. Journal of the Chemical Society (Resumed), 1, 1315–1321. https://doi.org/10.1039/jr9470001315
  • Goher, M. E., Ali, M. H., & El-Sayed, S. M. (2019). Trace metals contents in Nasser Lake and the Nile surface, Egypt: An overview. The Egyptian Journal of Aquatic Research, 45(4), 301–312. https://doi.org/10.1016/j.ejar.2019.12.002
  • González-López, M. E., Laureano-Anzaldo, C. M., Pérez-Fonseca, A. A., Arellano, M., & Robledo-Ortíz, J. R. (2022). A critical overview of adsorption models linearization: methodological and statistical inconsistencies. Separation & Purification Reviews, 51(3), 358–372. https://doi.org/10.1080/15422119.2021.1951757
  • Gümüş, D. (2019). Biosorptive application of defatted Laurus nobilis leaves as a waste material for treatment of water contaminated with heavy metal. International Journal of Phytoremediation, 21(6), 556–563. https://doi.org/10.1080/15226514.2018.1537254
  • Guo, X., Liu, Y., & Wang, J. L. (2020). Equilibrium, kinetics and molecular dynamic modeling of Sr2+ sorption onto microplastics. Journal of Hazardous Materials, 400, 123324. https://doi.org/10.1016/j.jhazmat.2020.123324
  • Guo, X., & Wang, J. L. (2019a). The phenomenological mass transfer kinetics model for Sr2+ sorption onto spheroids primary microplastics. Environmental Pollution (Barking, Essex: 1987), 250, 737–745. https://doi.org/10.1016/j.envpol.2019.04.091
  • Guo, X., & Wang, J. L. (2019b). A general kinetic model for adsorption: Theoretical analysis and modeling. Journal of Molecular Liquids, 288, 111100. https://doi.org/10.1016/j.molliq.2019.111100
  • Guo, X., & Wang, J. L. (2019c). Comparison of linearization methods for modeling the Langmuir adsorption isotherm. Journal of Molecular Liquids, 296, 111850. https://doi.org/10.1016/j.molliq.2019.111850
  • Halsey, G., & Taylor, H. S. (1947). The adsorption of hydrogen on tungsten powders. The Journal of Chemical Physics, 15(9), 624–630. https://doi.org/10.1063/1.1746618
  • Hassan, M., Naidu, R., Du, J. H., Qi, F. J., Ahsan, M. A., & Liu, Y. J. (2022). Magnetic responsive mesoporous alginate/β-cyclodextrin polymer beads enhance selectivity and adsorption of heavy metal ions. International Journal of Biological Macromolecules, 207, 826–840. https://doi.org/10.1016/j.ijbiomac.2022.03.159
  • Hawkes, J. S. (1997). Heavy metals. Journal of Chemical Education, 74(11), 1374. https://doi.org/10.1021/ed074p1374
  • He, S. R., Li, Y. T., Weng, L. P., Wang, J. J., He, J. X., Liu, Y. L., Zhang, K., Wu, Q. H., Zhang, Y. L., & Zhang, Z. (2018). Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: Influence of pH, ionic strength and natural organic matters. Science of the Total Environment, 637-638, 69–78. https://doi.org/10.1016/j.scitotenv.2018.04.300
  • Henseler, J., Ringle, C., & Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277–320.
  • Hines, A. L., & Maddox, R. N. (1985). Mass transfer: Fundamentals and applications. Prentice-Hall.
  • Ho, Y. S., Wase, D. A. J., & Forster, C. F. (1996). Removal of lead ions from aqueous solution using sphagnum moss peat as adsorbent. Water SA, 22, 219–224.
  • Hu, Q., & Zhang, Z. (2019). Application of Dubinine–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. Journal of Molecular Liquids, 277, 646–648. https://doi.org/10.1016/j.molliq.2019.01.005
  • Hu, X., Xue, Y., Liu, L., Zeng, Y., & Long, L. (2018). Preparation and characterization of Na2S-modified biochar for nickel removal. Environmental Science and Pollution Research International, 25(10), 9887–9895. https://doi.org/10.1007/s11356-018-1298-6
  • Hu, Y., Zhao, T., Guo, Y., Wang, M., Brachhold, K., Chu, C., Hanson, A., Kumar, S., Lin, R., Long, W., Luo, M., Ma, J. F., Miao, Y., Nie, S., Sheng, Y., Shi, W., Whelan, J., Wu, Q., Wu, Z., … Zhang, Q. (2023). 100 essential questions for the future of agriculture. Modern Agriculture, 1(1), 4–12. https://doi.org/10.1002/moda.5
  • Hu, Y. M., Guo, X., & Wang, J. L. (2020). Biosorption of Sr2+ and Cs+ onto Undaria pinnatifida: Isothermal titration calorimetry and molecular dynamics simulation. Journal of Molecular Liquids, 319, 114146. https://doi.org/10.1016/j.molliq.2020.114146
  • Huo, J. B., Yu, G. C., & Wang, J. L. (2021a). Adsorptive removal of Sr(II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel. Chemosphere, 278, 130492. https://doi.org/10.1016/j.chemosphere.2021.130492
  • Huo, J. B., Yu, G. C., & Wang, J. L. (2021b). Magnetic zeolitic imidazolate frameworks composite as an efficient adsorbent for arsenic removal from aqueous solution. Journal of Hazardous Materials, 412, 125298. https://doi.org/10.1016/j.jhazmat.2021.125298
  • Jia, F., Li, J. F., & Wang, J. L. (2017). Recovery of boric acid from the simulated radioactive wastewater by vacuum membrane distillation crystallization. Annals of Nuclear Energy, 110, 1148–1155. https://doi.org/10.1016/j.anucene.2017.07.024
  • Kabir, A., Sraboni, H. J., Hasan, M. M., & Sorker, R. (2022). co-environmental assessment of the Turag River in the megacity of Bangladesh. Environmental Challenges, 6, 100423. https://doi.org/10.1016/j.envc.2021.100423
  • Khan, Z. H., Gao, M., Qiu, W., & Song, Z. (2021). Mechanism of novel MoS2-modified biochar composites for removal of cadmium (II) from aqueous solutions. Environmental Science and Pollution Research International, 28(26), 34979–34989. https://doi.org/10.1007/s11356-021-13199-9
  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24, 1–39.
  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38(11), 2221–2295. https://doi.org/10.1021/ja02268a002
  • Langmuir, I. (1918). Adsorption of gases on glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361–1403. https://doi.org/10.1021/ja02242a004
  • Lao, Q., Su, Q., Liu, G., Shen, Y., Chen, F., Lei, X., Qing, S., Wei, C., Zhang, C., & Gao, J. (2019). Spatial distribution of and historical changes in heavy metals in the surface seawater and sediments of the Beibu Gulf, China. Marine Pollution Bulletin, 146, 427–434. https://doi.org/10.1016/j.marpolbul.2019.06.080
  • Li, Q., Song, W., Sun, M., Li, J., & Yu, Z. (2020). Response of Bacillus vallismortis sp. EPS to exogenous sulfur stress/induction and its adsorption performance on Cu(II). Chemosphere, 251, 126343. https://doi.org/10.1016/j.chemosphere.2020.126343
  • Lima, E. C., Sher, F., Guleria, A., Saeb, M. R., Anastopoulos, I., Tran, H. N., & Hosseini-Bandegharaei, A. (2021). Is one performing the treatment data of adsorption kinetics correctly? Journal of Environmental Chemical Engineering, 9(2), 104813. https://doi.org/10.1016/j.jece.2020.104813
  • Lin, H., Lan, W., Feng, Q., Zhu, X., Li, T., Zhang, R., Song, H., Zhu, Y., & Zhao, B. (2021). Pollution and ecological risk assessment, and source identification of heavy metals in sediment from the Beibu Gulf, South China Sea. Marine Pollution Bulletin, 168, 112403. https://doi.org/10.1016/j.marpolbul.2021.112403
  • Liu, C., & Zhang, H. X. (2022). Modified-biochar adsorbents (MBAs) for heavy-metal ions adsorption: A critical review. Journal of Environmental Chemical Engineering, 10(2), 107393. https://doi.org/10.1016/j.jece.2022.107393
  • Liu, H. Y., & Wang, J. L. (2013). Treatment of radioactive wastewater using direct contact membrane distillation. Journal of Hazardous Materials, 261(15), 307–315. https://doi.org/10.1016/j.jhazmat.2013.07.045
  • Liu, J., Zhang, W., Mei, M., Wang, T., Chen, S., & Li, J. (2022). A Ca-rich biochar derived from food waste digestate with exceptional adsorption capacity for arsenic (III) removal via a cooperative mechanism. Separation and Purification Technology, 295, 121359. https://doi.org/10.1016/j.seppur.2022.121359
  • Liu, Q., Wu, H., Chen, J., Guo, B., Zhao, X., Lin, H., Li, W., Zhao, X., Lv, S., & Huang, C. (2022). Adsorption mechanism of trace heavy metals on microplastics and simulating their effect on microalgae in river. Environmental Research, 214(Pt 1), 113777. https://doi.org/10.1016/j.envres.2022.113777
  • Liu, S., Huang, J., Zhang, W., Shi, L., Yi, K., Yu, H., Zhang, C., Li, S., & Li, J. (2022). Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects. Journal of Environmental Management, 302(Pt A), 113995. https://doi.org/10.1016/j.jenvman.2021.113995
  • Liu, X. J., & Wang, J. L. (2020). Electro-assisted adsorption of Cs(I) and Co(II) from aqueous solution by capacitive deionization with activated carbon cloth/graphene oxide composite electrode. The Science of the Total Environment, 749, 141524. https://doi.org/10.1016/j.scitotenv.2020.141524
  • Liu, X. J., & Wang, J. L. (2021). Electro-adsorption characteristics and mechanism of Sr2+ ions by capacitive deionization and CFD analysis study. Progress in Nuclear Energy, 133, 103628. https://doi.org/10.1016/j.pnucene.2020.103628
  • Liu, X. J., Wu, J. L., & Wang, J. L. (2022). Electro-adsorption of Sr(II) from aqueous solution by activated carbon cloth/nickel hexacyanoferrate composite electrode through capacitive deionization. Journal of Cleaner Production, 380, 135075. https://doi.org/10.1016/j.jclepro.2022.135075
  • Liu, Y., Zhang, X., & Wang, J. L. (2022). A critical review of various adsorbents for selective removal of nitrate from water: Structure, performance and mechanism. Chemosphere, 291(Pt 1), 132728. https://doi.org/10.1016/j.chemosphere.2021.132728
  • Lucaci, A. R., Bulgariu, D., & Bulgariu, L. (2021). In situ functionalization of iron oxide particles with alginate: A promising biosorbent for retention of metal ions. Polymers, 13(20), 3554. https://doi.org/10.3390/polym13203554
  • Medykowska, M., Wiśniewska, M., Szewczuk-Karpisz, K., & Panek, R. (2022). Interaction mechanism of heavy metal ions with the nanostructured zeolites surface – Adsorption, electrokinetic and XPS studies. Journal of Molecular Liquids, 357, 119144. https://doi.org/10.1016/j.molliq.2022.119144
  • Miao, S. Y., Guo, J. R., Deng, Z. M., Yu, J. X., & Dai, Y. R. (2022). Adsorption and reduction of Cr(VI) in water by iron-based metal-organic frameworks (Fe-MOFs) composite electrospun nanofibrous membranes. Journal of Cleaner Production, 370, 133566. https://doi.org/10.1016/j.jclepro.2022.133566
  • Mohammadi, F., Hajiannasab, H., & Hassani, A. A. (2014). Isotherms for the biosorption of Cr (VI) using excess municipal sludge. International Journal of Environmental Engineering, 6(3), 303–313. https://doi.org/10.1504/IJEE.2014.064305
  • Morohashi, T., Sano, T., & Yamada, S. (1994). Effects of strontium on calcium metabolism in rats. I. a distinction between the pharmacological and toxic doses. Japanese Journal of Pharmacology, 64(3), 155–162. https://doi.org/10.1016/S0021-5198(19)35850-0
  • Negm, N. A., Abd El Wahed, M. G., Hassan, A. R. A., & Abou Kana, M. T. (2018). Feasibility of metal adsorption using brown algae and fungi: Effect of biosorbents structure on adsorption isotherm and kinetics. Journal of Molecular Liquids, 264, 292–305. https://doi.org/10.1016/j.molliq.2018.05.027
  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169), 134–139. https://doi.org/10.1038/333134a0
  • Özer, A. (2007). Removal of Pb (II) ions from aqueous solutions by sulphuric acid-treated wheat bran. Journal of Hazardous Materials. 14, 753–761.
  • Pan, X. L., Wang, J. L., & Zhang, D. Y. (2005). Biosorption of Pb (II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Biochemistry, 40, 2799–2803.
  • Pan, X. L., Wang, J. L., & Zhang, D. Y. (2009). Sorption of cobalt to bone char: Kinetics, competitive sorption and mechanism. Desalination, 249(2), 609–614. https://doi.org/10.1016/j.desal.2009.01.027
  • Park, J. H., Ok, Y. S., Kim, S. H., Cho, J. S., Heo, J. S., DeLaune, R. D., & Seo, D. C. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142, 77–83. https://doi.org/10.1016/j.chemosphere.2015.05.093
  • Polanyi, M. (1932). Section III.–Theories of the adsorption of gases. A general survey and some additional remarks. Introductory paper to section III. Transactions of the Faraday Society, 28(0), 316–333. https://doi.org/10.1039/TF9322800316
  • Pournara, A. D., Margariti, A., Tarlas, G. D., Kourtelaris, A., Petkov, V., Kokkinos, C., Economou, A., Papaefstathiou, G. S., & Manos, M. J. (2019). A Ca2+ MOF combining highly efficient sorption and capability for voltammetric determination of heavy metal ions in aqueous media. Journal of Materials Chemistry A, 7(25), 15432–15443. https://doi.org/10.1039/C9TA03337H
  • Pourret, O., Bollinger, J. C., & Hursthouse, A. (2021). Heavy metal: A misused term? Acta Geochimica, 40(3), 466–471. https://doi.org/10.1007/s11631-021-00468-0
  • Pourret, O., Bollinger, J. C., Hursthouse, A., & van Hullebusch, E. D. (2022). Sorption vs adsorption: The words they are a-changin’, not the phenomena. The Science of the Total Environment, 838(Pt 3), 156545. https://doi.org/10.1016/j.scitotenv.2022.156545
  • Reddy, T. V., Chauhan, S., & Chakraborty, S. (2016). Adsorption isotherm and kinetics analysis of hexavalent chromium and mercury on mustard oil cake. Environmental Engineering Research, 22(1), 95–107. https://doi.org/10.4491/eer.2016.094
  • Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. The Journal of Physical Chemistry, 63(6), 1024–1024. https://doi.org/10.1021/j150576a611
  • Reichenberg, D. (1953). Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. Journal of the American Chemical Society, 75(3), 589–597. https://doi.org/10.1021/ja01099a022
  • Ruthven, D. M. (1984). Principles of adsorption and adsorption processes. John Wiley & Sons.
  • Salvestrini, S., Leone, V., Iovino, P., Canzano, S., & Capasso, S. (2014). Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms. The Journal of Chemical Thermodynamics, 68, 310–316. https://doi.org/10.1016/j.jct.2013.09.013
  • Selatnia, A., Boukazoula, A., Kechid, N., Bakhti, M. Z., & Chergui, A. (2004). Biosorption of Fe3+ from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Process Biochemistry, 39(11), 1643–1651. https://doi.org/10.1016/S0032-9592(03)00305-4
  • Shan, R., Shi, Y., Gu, J., Wang, Y., & Yuan, H. (2020). Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems. Chinese Journal of Chemical Engineering, 28(5), 1375–1383. https://doi.org/10.1016/j.cjche.2020.02.012
  • Sharma, B., & Shukla, P. (2021). Lead bioaccumulation mediated by Bacillus cereus BPS-9 from an industrial waste contaminated site encoding heavy metal resistant genes and their transporters. Journal of Hazardous Materials, 401, 123285. https://doi.org/10.1016/j.jhazmat.2020.123285
  • Sips, R. (1948). On the structure of a catalyst surface. The Journal of Chemical Physics, 16(5), 490–495. https://doi.org/10.1063/1.1746922
  • Temkin, M. J., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochimica USSR, 12, 327–356.
  • Thomas, H. C. (1944). Heterogeneous ion exchange in a flowing system. Journal of the American Chemical Society, 66(10), 1664–1666. https://doi.org/10.1021/ja01238a017
  • Tran, N. Y., You, S. J., Hosseini-Bandegharaei, A., & Chao, H. P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88–116. https://doi.org/10.1016/j.watres.2017.04.014
  • Volmer, M. (1925). Thermodynamische folgerungen aus der zustandsgleichung fur adsorbierte stoffe. Zeitschrift für Physikalische Chemie, 115U(1), 253–260. https://doi.org/10.1515/zpch-1925-11519
  • Wang, J. L., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24(5), 427–451. https://doi.org/10.1016/j.biotechadv.2006.03.001
  • Wang, J. L., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002
  • Wang, J. L., & Chen, C. (2014). Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresource Technology, 160, 129–141. https://doi.org/10.1016/j.biortech.2013.12.110
  • Wang, J. L., & Guo, X. (2020a). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. https://doi.org/10.1016/j.chemosphere.2020.127279
  • Wang, J. L., & Guo, X. (2020b). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390, 122156. https://doi.org/10.1016/j.jhazmat.2020.122156
  • Wang, J. L., & Guo, X. (2022). Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications. Chemosphere, 309(Pt 2), 136732. https://doi.org/10.1016/j.chemosphere.2022.136732
  • Wang, J. L., & Wang, S. Z. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282
  • Wang, J. L., & Wang, S. Z. (2022). A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coordination Chemistry Reviews, 453, 214338. https://doi.org/10.1016/j.ccr.2021.214338
  • Wang, J. L., & Zhuang, S. T. (2019). Covalent organic frameworks (COFs) for environmental applications. Coordination Chemistry Reviews, 400, 213046. https://doi.org/10.1016/j.ccr.2019.213046
  • Wang, J. L., Zhuang, S. T., & Liu, Y. (2018). Metal hexacyanoferrates-based adsorbents for cesium removal. Coordination Chemistry Reviews, 374, 430–438. https://doi.org/10.1016/j.ccr.2018.07.014
  • Wang, M., & You, X. (2023). Efficient adsorption of antibiotics and heavy metals from aqueous solution by structural designed PSSMA-functionalized-chitosan magnetic composite. Chemical Engineering Journal, 454, 140417. https://doi.org/10.1016/j.cej.2022.140417
  • Wang, Q., Wang, Y., Yuan, L., Zou, T., Zhang, W., Zhang, X., Zhang, L., & Huang, X. (2022). Utilization of low-cost watermelon rind for efficient removal of Cd(II) from aqueous solutions: Adsorption performance and mechanism elucidation. Chemical Engineering Journal Advances, 12, 100393. https://doi.org/10.1016/j.ceja.2022.100393
  • Wang, T., Liu, W., Xiong, L., Xu, N., & Ni, J. R. (2013). Influence of pH, ionic strength and humic acid on competitive adsorption of Pb (II), Cd (II) and Cr (III) onto titanate nanotubes. Chemical Engineering Journal, 215-216, 366–374. https://doi.org/10.1016/j.cej.2012.11.029
  • Watts, A. J., Lewis, C., Goodhead, R. M., Beckett, S. J., Moger, J., Tyler, C. R., & Galloway, T. S. (2014). Uptake and retention of microplastics by the shore crab Carcinus maenas. Environmental Science & Technology, 48(15), 8823–8830. https://doi.org/10.1021/es501090e
  • Webber, T. W., & Chakkravorti, R. K. (1974). Pore and solid diffusion models for fixed-bed adsorbers. AlChE Journal, 20, 228–238.
  • Webber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. ASCE Sanitary Engineering Division Journal, 1, 1–2.
  • WHO. (2011). Guidelines for drinking water quality 3rd ed, Recommendations. 1, Recommendations.
  • Xian, J. Y., Yang, K. L., Wang, H. N., Feng, M. L., Cai, S. L., Song, H. Y., Zheng, S. R., & Zhang, W. G. (2021). A hydrolytically stable Zn(II) coordination polymer based on a new imidazolyl-pyrazolyl heterotopic ligand as a scavenger of MnO4− and a luminescent sensor for MnO4− and Cr2O72−. Inorganic Chemistry Communications, 130, 108720. https://doi.org/10.1016/j.inoche.2021.108720
  • Xing, M., Zhuang, S. T., & Wang, J. L. (2019). Adsorptive removal of strontium ions from aqueous solution by graphene oxide. Environmental Science and Pollution Research International, 26(29), 29669–29678. https://doi.org/10.1007/s11356-019-06149-z
  • Xing, M., Zhuang, S. T., & Wang, J. L. (2020). Efficient removal of Cs(I) from aqueous solution using graphene oxide. Progress in Nuclear Energy, 119, 103167. https://doi.org/10.1016/j.pnucene.2019.103167
  • Xu, C. L., Feng, Y. L., Li, H. R., Wu, R. G., Ju, J. R., Liu, S. L., Yang, Y., & Wang, B. (2022). Adsorption of heavy metal ions by iron tailings: Behavior, mechanism, evaluation and new perspectives. Journal of Cleaner Production, 344, 131065. https://doi.org/10.1016/j.jclepro.2022.131065
  • Xu, G. Y., An, Z. H., Xu, K., Liu, Q., Das, R., & Zhao, H. L. (2021). Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coordination Chemistry Reviews, 427, 213554. https://doi.org/10.1016/j.ccr.2020.213554
  • Xu, L. J., & Wang, J. L. (2017). The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Critical Reviews in Environmental Science and Technology, 47(12), 1042–1105. https://doi.org/10.1080/10643389.2017.1342514
  • Xu, Q., Yuan, H., Wang, H., Xu, Y., & Yang, D. (2022). A review on modification methods of adsorbents for naphthalene in environment. Catalysts, 12(4), 398. https://doi.org/10.3390/catal12040398
  • Xu, Z., Lin, Y., Lin, Y., Yang, D., & Zheng, H. (2021). Adsorption behaviors of paper mill sludge biochar to remove Cu, Zn and As in wastewater. Environmental Technology & Innovation, 23, 101616. https://doi.org/10.1016/j.eti.2021.101616
  • Yakovlev, E., Puchkov, A., Malkov, A., & Bedrina, D. (2022). Assessment of heavy metals distribution and environmental risk parameters in bottom sediments of the Pechora River estuary (Arctic Ocean Basin). Marine Pollution Bulletin, 182, 113960. https://doi.org/10.1016/j.marpolbul.2022.113960
  • Yang, C. (1993). Statistical mechanical aspects of adsorption systems obeying the Temkin isotherm. The Journal of Physical Chemistry, 97(27), 7097–7101. https://doi.org/10.1021/j100129a029
  • Yang, J., Cao, J., Xing, G., & Yuan, H. (2015). Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresource Technology, 175, 537–544. https://doi.org/10.1016/j.biortech.2014.10.124
  • Yang, R. T. (1987). Gas separation by adsorption processes. Boston.
  • Yang, X., Zhu, G., Liu, Y., Wang, Q., Guo, N., Zeng, Y., Han, X., Yu, D., & Yu, H. (2022). Enhanced removal of Pb(II) from contaminated water by hierarchical titanate microtube derived from titanium glycolate. Advanced Powder Technology, 33(1), 103376. https://doi.org/10.1016/j.apt.2021.11.028
  • Zeng, X. C., Zhang, G. H., & Zhu, J. F. (2022). Selective adsorption of heavy metals from water by a hyper-branched magnetic composite material: Characterization, performance, and mechanism. Journal of Environmental Management, 314, 114979. https://doi.org/10.1016/j.jenvman.2022.114979
  • Zhang, P., Zhang, X., Yuan, X., Xie, R., & Han, L. (2021). Characteristics, adsorption behaviors, Cu(II) adsorption mechanisms by cow manure biochar derived at various pyrolysis temperatures. Bioresource Technology, 331, 125013. https://doi.org/10.1016/j.biortech.2021.125013
  • Zhang, X., Ma, J. M., Zou, B. Z., Ran, L., Zhu, L. X., Zhang, H., Ye, Z. F., & Zhou, L. C. (2022). Synthesis of a novel bis Schiff base chelating resin for adsorption of heavy metal ions and catalytic reduction of 4-NP. Reactive and Functional Polymers, 180, 105409. https://doi.org/10.1016/j.reactfunctpolym.2022.105409
  • Zhang, Y. H., Wang, Y. C., Zhang, H. H., Li, Y., Zhang, Z. B., & Zhang, W. (2020). Recycling spent lithium-ion battery as adsorbents to remove aqueous heavy metals: Adsorption kinetics, isotherms, and regeneration assessment. Resources, Conservation and Recycling, 156, 104688. https://doi.org/10.1016/j.resconrec.2020.104688
  • Zhu, Y. H., Hu, J., & Wang, J. L. (2012). Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of Hazardous Materials, 221-222, 155–161. https://doi.org/10.1016/j.jhazmat.2012.04.026
  • Zhu, Y. H., Hu, J., & Wang, J. L. (2014). Removal of Co2+ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite. Progress in Nuclear Energy, 71, 172–178. https://doi.org/10.1016/j.pnucene.2013.12.005
  • Zhuang, S. T., Zhang, Q., & Wang, J. L. (2021). Adsorption of Co2+ and Sr2+ from aqueous solution by chitosan grafted with EDTA. Journal of Molecular Liquids, 325, 115197. https://doi.org/10.1016/j.molliq.2020.115197
  • Zhuang, S. T., Zhu, K., Xu, L., Hu, J., & Wang, J. L. (2022). Adsorption of Co2+ and Sr2+ in aqueous solution by a novel fibrous chitosan biosorbent. The Science of the Total Environment, 825, 153998. https://doi.org/10.1016/j.scitotenv.2022.153998
  • Zhuang, S. T., Zhu, K. K., Hu, J., & Wang, J. L. (2022). Selective and effective adsorption of cesium ions by metal hexacyanoferrates (MHCF, M = Cu, Co, Ni) modified chitosan fibrous biosorbent. The Science of the Total Environment, 835, 155575. https://doi.org/10.1016/j.scitotenv.2022.155575
  • Zhuang, S. T., Zhu, K. K., & Wang, J. L. (2021). Fibrous chitosan/cellulose composite as an efficient adsorbent for Co(II) removal. Journal of Cleaner Production, 285, 124911. https://doi.org/10.1016/j.jclepro.2020.124911

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.