83
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Nitrite Generates an Oxidant Stress and Increases Nitric Oxide in EA.hy926 Endothelial Cells

, &
Pages 581-589 | Received 16 Feb 2004, Published online: 07 Jul 2009
 

Abstract

Nitrite is a breakdown product of nitric oxide that in turn is oxidized to nitrate in cells. In this work, we investigated whether reactive oxidant species might be generated during nitrite metabolism in cultured EA.hy926 endothelial cells. Nitrite was taken up by the cells in a time- and concentration-dependent manner and oxidized to nitrate, which accumulated in cells to concentrations almost 10-fold those of nitrite. Conversion of low millimolar concentrations of nitrite to nitrate was associated with increased oxidant stress in the cells. This manifested as increased oxidation of dihydrofluorescein in tandem with depletion of both GSH and ascorbate. Further, loading cells with ascorbate or treatment with desferrioxamine prevented nitrite-induced dihydrofluorescein oxidation. Nitrite within cells also increased the fluorescence of 4-amino-5-methylamino-2′,7′-difluorofluorescein and inhibited the activity of cellular glyceraldehyde 3-phosphate dehydrogenase, which are markers of intracellular nitrosation reactions. Intracellular ascorbate partially prevented both of these effects of nitrite. Although ascorbate can reduce nitrite to nitric oxide at low pH, in endothelial cells loaded with ascorbate, its predominant effect at high nitrite concentrations is to prevent potentially damaging nitrosation reactions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.