97
Views
28
CrossRef citations to date
0
Altmetric
Original

Oxidative-induced membrane damage in diabetes lymphocytes: Effects on intracellular Ca2 + homeostasis

, , , , , , & show all
Pages 138-148 | Received 28 Sep 2008, Published online: 07 Jul 2009
 

Abstract

Oxidative stress is linked to several human diseases, including diabetes. However, the intracellular signal transduction pathways regulated by reactive oxygen species (ROS) remain to be established. Deleterious effects of ROS stem from interactions with various ion transport proteins such as ion channels and pumps, primarily altering Ca2 + homeostasis and inducing cell dysfunction. This study characterized the Ca2 + transport system in lymphocytes of patients with type-2 diabetes, evaluating the possible correlation between cell modifications and the existence of specific oxidative stress damage. Lymphocytes from type-2 diabetes patients displayed oxidative stress features (accumulation of some ROS species, membrane peroxidation, increase in protein carbonyls, increase in SOD and Catalase activity) and Ca2 + dyshomeostasis (modified voltage-dependent and inositol 1,4,5-triphosphate-mediated Ca2 + channel activities, decrease in Ca2 + pumps activity). The data support a correlation between oxidative damage and alterations in intracellular Ca2 + homeostasis, possibly due to modification of the ionic control in lymphocytes of type-2 diabetes patients.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.