97
Views
28
CrossRef citations to date
0
Altmetric
Original

Oxidative-induced membrane damage in diabetes lymphocytes: Effects on intracellular Ca2 + homeostasis

, , , , , , & show all
Pages 138-148 | Received 28 Sep 2008, Published online: 07 Jul 2009

References

  • Davi G, Falco A, Patrono C. Lipid peroxidation in diabetes mellitus. Antioxid Redox Signal 2005; 7: 256–268
  • West IC. Radicals and oxidative stress in diabetes. Diabet Med 2000; 17: 171–180
  • Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 1994; 233: 357–363
  • Selvaraj N, Bobby Z, Sridhar MG. Oxidative stress: does it play a role in the genesis of early glycated proteins?. Med Hypotheses 2008; 70: 265–268
  • Pop-Busui R, Sima A, Stevens M. Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev 2006; 22: 257–273
  • Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ. Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol 2006; 291: C1082–C1088
  • Davi G, Chiarelli F, Santilli F, Pomilio M, Vigneri S, Falco A, Basili S, Ciabattoni G, Patrono C. Enhanced lipid peroxidation and platelet activation in the early phase of type 1 diabetes mellitus: role of interleukin-6 and disease duration. Circulation 2003; 107: 3199–3203
  • Davi G, Ciabattoni G, Consoli A, Mezzetti A, Falco A, Santarone S, Pennese E, Vitacolonna E, Bucciarelli T, Costantini F, Capani F, Patrono C. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 1999; 99: 224–229
  • Levy J. Abnormal cell calcium homeostasis in type 2 diabetes mellitus: a new look on old disease. Endocrine 1999; 10: 1–6
  • Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 2004; 25: 612–628
  • Boyum A. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol 1976; (Suppl 5): 9–15
  • M'Bemba-Meka P, Lemieux N, Chakrabarti SK. Role of oxidative stress, mitochondrial membrane potential, and calcium homeostasis in nickel sulfate-induced human lymphocyte death in vitro. Chem Biol Interact 2005; 156: 69–80
  • Rauen U, Petrat F, Li T, De Groot H. Hypothermia injury/cold-induced apoptosis–evidence of an increase in chelatable iron causing oxidative injury in spite of low O2-/H2O2 formation. Faseb J 2000; 14: 1953–1964
  • Fulle S, Mecocci P, Fano G, Vecchiet I, Vecchini A, Racciotti D, Cherubini A, Pizzigallo E, Vecchiet L, Senin U, Beal MF. Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. Free Radic Biol Med 2000; 29: 1252–1259
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265–275
  • Fano G, Mecocci P, Vecchiet J, Belia S, Fulle S, Polidori MC, Felzani G, Senin U, Vecchiet L, Beal MF. Age and sex influence on oxidative damage and functional status in human skeletal muscle. J Muscle Res Cell Motil 2001; 22: 345–351
  • Habig WH, Jakoby WB. Assays for differentiation of glutathione S-transferases. Methods Enzymol 1981; 77: 398–405
  • L'Abbe MR, Fischer PW. An automated method for the determination of Cu,Zn-superoxide dismutase in plasma and erythrocytes using an ABA-200 discrete analyzer. Clin Biochem 1986; 19: 175–178
  • Ramos-Martinez JI, Bartolome TR, Pernas RV. Purification and properties of glutathione reductase from hepatopancreas of mytilus edulis M. Comp Biochem Physiol 1983; 75B: 689–692
  • Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 1976; 71: 952–958
  • Fulle S, Di Donna S, Puglielli C, Pietrangelo T, Beccafico S, Bellomo R, Protasi F, Fano G. Age-dependent imbalance of the antioxidative system in human satellite cells. Exp Gerontol 2005; 40: 189–197
  • Fulle S, Belia S, Vecchiet J, Morabito C, Vecchiet L, Fano G. Modification of the functional capacity of sarcoplasmic reticulum membranes in patients suffering from chronic fatigue syndrome. Neuromusc Disord 2003; 13: 479–484
  • Treves S, Scutari E, Robert M, Groh S, Ottolia M, Prestipino G, Ronjat M, Zorzato F. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle. Biochemistry 1997; 36: 11496–11503
  • Mesonero JE, Tanfin Z, Hilly M, Colosetti P, Mauger JP, Harbon S. Differential expression of inositol 1,4,5-trisphosphate receptor types 1, 2, and 3 in rat myometrium and endometrium during gestation. Biol Reprod 2000; 63: 532–537
  • Belia S, Pietrangelo T, Fulle S, Menchetti G, Cecchini E, Felaco M, Vecchiet J, Fano G. Sodium nitroprusside, a NO donor, modifies Ca2+ transport and mechanical properties in frog skeletal muscle. J Muscle Res Cell Motil 1998; 19: 865–876
  • Taussky HH, Shorr E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 1953; 202: 675–685
  • Guarnieri S, Fano G, Rathbone MP, Mariggio MA. Cooperation in signal transduction of extracellular guanosine 5' triphosphate and nerve growth factor in neuronal differentiation of PC12 cells. Neuroscience 2004; 128: 697–712
  • Ritter M, Menon S, Zhao L, Xu S, Shelby J, Barry WH. Functional importance and caffeine sensitivity of ryanodine receptors in primary lymphocytes. Int Immunopharmacol 2001; 1: 339–347
  • Hosoi E, Nishizaki C, Gallagher KL, Wyre HW, Matsuo Y, Sei Y. Expression of the ryanodine receptor isoforms in immune cells. J Immunol 2001; 167: 4887–4894
  • Kotturi MF, Hunt SV, Jefferies WA. Roles of CRAC and Cav-like channels in T cells: more than one gatekeeper?. Trends Pharmacol Sci 2006; 27: 360–367
  • Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 2005; 25: 29–38
  • Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. Faseb J 1999; 13: 23–30
  • Chinopoulos C, Adam-Vizi V. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. Febs J 2006; 273: 433–450
  • Hawkins BJ, Solt LA, Chowdhury I, Kazi AS, Abid MR, Aird WC, May MJ, Foskett JK, Madesh M. G protein-coupled receptor Ca2 + -linked mitochondrial reactive oxygen species are essential for endothelial/leukocyte adherence. Mol Cell Biol 2007; 27: 7582–7593
  • Matteucci E, Giampietro O. Flow cytometry study of leukocyte function: analytical comparison of methods and their applicability to clinical research. Curr Med Chem 2008; 15: 596–603
  • Alexiewicz JM, Kumar D, Smogorzewski M, Massry SG. Elevated cytosolic calcium and impaired proliferation of B lymphocytes in type II diabetes mellitus. Am J Kidney Dis 1997; 30: 98–104
  • Balasubramanyam M, Premanand C, Mohan V. The lymphocyte as a cellular model to study insights into the pathophysiology of diabetes and its complications. Ann N Y Acad Sci 2002; 958: 399–402
  • Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 1997; 386: 855–858
  • Zweifach A, Lewis RS. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc Natl Acad Sci USA 1993; 90: 6295–6299
  • Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BV, Mayr GW. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 1999; 398: 70–73
  • Sei Y, Gallagher KL, Basile AS. Skeletal muscle type ryanodine receptor is involved in calcium signaling in human B lymphocytes. J Biol Chem 1999; 274: 5995–6002
  • Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH. Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 1990; 265: 13472–13483
  • Bourguignon LY, Chu A, Jin H, Brandt NR. Ryanodine receptor-ankyrin interaction regulates internal Ca2+ release in mouse T-lymphoma cells. J Biol Chem 1995; 270: 17917–17922
  • Gomes B, Savignac M, Moreau M, Leclerc C, Lory P, Guery JC, Pelletier L. Lymphocyte calcium signaling involves dihydropyridine-sensitive L-type calcium channels: facts and controversies. Crit Rev Immunol 2004; 24: 425–447
  • Densmore JJ, Haverstick DM, Szabo G, Gray LS. A voltage-operable current is involved in Ca2+ entry in human lymphocytes whereas ICRAC has no apparent role. Am J Physiol 1996; 271: C1494–C1503
  • Gwack Y, Feske S, Srikanth S, Hogan PG, Rao A. Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 2007; 42: 145–156
  • Hakamata Y, Nishimura S, Nakai J, Nakashima Y, Kita T, Imoto K. Involvement of the brain type of ryanodine receptor in T-cell proliferation. FEBS Lett 1994; 352: 206–210
  • De Cristofaro R, Rocca B, Vitacolonna E, Falco A, Marchesani P, Ciabattoni G, Landolfi R, Patrono C, Davi G. Lipid and protein oxidation contribute to a prothrombotic state in patients with type 2 diabetes mellitus. J Thromb Haemost 2003; 1: 250–256
  • Putney JW, Jr. New molecular players in capacitative Ca2+ entry. J Cell Sci 2007; 120: 1959–1965

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.